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Problem

Most chemical starting points for design lack the affinity re-
quired to function as drugs and optimization typically results in 
increased lipophilicity, molecular size and molecular complexity 
[1-10]. This highlights excessive molecular size and lipophilic-
ity as primary design risk factors. Risks associated with molecu-
lar complexity [2,6,9] are more likely to be encountered in the 
screening phase of a project. Molecular complexity can also be 
seen inversely as the degree to which a compound is structur-
ally prototypical [1,3,7] (e.g., minimally substituted) and might 
also be defined in terms of the molecular shape [7,10] of a 
compound or the roughness [8,10] of its molecular surface. 
Molecular recognition [1,5,9] provides much of the conceptual 
framework for drug design and many medicinal chemists con-
sider molecular interactions [6,9,10] when elaborating chemical 
start points. While a structure-activity relationship can point to 
the importance of individual interactions, the contribution of 
a protein-ligand contact to affinity is not, in general, an experi-
mental observable [1-9].

It would be safe to say, however, that a weak link in a row of 
the drug design leading events is a hard way to make a choice of 
the most efficient pharmacophore revealed within a paradigm 
of the «drug-target», i.e. «ligand-receptor», affinity docking. To 

optimize a solution of this dilemma, an arsenal of mathematical 
methods might be employed once they’re focused on a model-
ing and testing of the above mentioned phenomena.

As per these methods themselves, they are still far of being 
perfect and yet there is «enough room ahead» to move forward 
with an attempt to upgrade the current probabilistic computa-
tional outlook for better In Silico ligand-receptor fitting. This at-
tempt our present study is all about.

Methodology of analysis

Bailey differential equation

Legible proof of Bailey’s formula [2,3,8] is presented in this 
work in a form suited for immediate practical use. Below  
stands for time and  denotes a homogeneous Markov 
chain with continuous time and the state space  consisting 
of non-negative integers (the population, in the basics example 
considered). The process values  at time  are denoted as 

, and  is the Markov process in-
crement (the population change over the period of time from  
to )). The probability distribution at time  is determined 
by the probabilities  of the population numbering  spe-
cies at time .

Abstract

Ligand efficiency is a widely used design parameter in drug discovery. The dependence of 
ligand efficiency on the concentration unit can be eliminated by defining efficiency in terms 
of sensitivity of affinity to molecular size and this is illustrated with reference to fragment-to-
lead optimizations. An alternative to ligand efficiency for normalization of affinity with respect 
to molecular size is presented. The importance of examining relationships between affinity 
and molecular size directly is stressed throughout this study. To upgrade the contemporary In 
Silico drug design agenda, a novel computational version of Markov chains theory has been 
proposed. This is about to predict some crucial patterns of the ligand-receptor recognition and 
coupling.

Keywords: Ligand-target coupling; Affinity; Pharmacophores; In Silico drug design; 
Pharmacokinetics.



MedDiscoveries LLC

2

The probability-generating function of the distribution for 
the process  is given by

with . The transition function for the Markov process 
is defined by the probability distribution for . For a homo-
geneous Markov chain (provided that the transitions occur), we 
have, up to infinitesimal corrections , 

	 (1)

where the transition intensities  are non-negative 
functions depending solely on  for fixed values of . It 
should be noted that, since the set of states  for the process 
considered is comprised of non-negative numbers, the reason-
able assumption is that for . 

In this case, the probability that no transition occurs between 
 and   is, up to an infinitesimal term , given by

 (2)

Let  stand for the expected value of  
at time ,  with  being a measurable function; let 

 be the expected value of  at ; 
and let  be the conditional expectation 
for . Also, assume that  
with  is the Laplace-Stieljes transform of the probability 
distribution for process  which is designated as the mo-
ment-generating function;   is the cumulant-
generating function. The cumulant-generating function is cus-
tomarily represented in the form of Taylor series in 

Here  is the i-th cumulant of the  process at time 
. The first cumulant is equal to the expected value, the second 
– to dispersion, and the first cross-cumulant – to covariance. 

Theorem 1. Suppose the above homogeneous Markov chain  
with continuous time and with the state space  

is defined and its generating function  is differentiable. 
Then the generating function of the homogeneous Markov pro-
cess is governed by the equation

    (3)

Proof 1: Assuming that all of the expected values implied be-
low exist, the expected value obeys the relation 

      (4)

Given the above and as long as the expected values exist and 
the process is of the Markov type, the moment-generating func-
tion for the process at time  can be written with 
the help of Eq. (4) as 

Therefore, 

(5)

2. Consider the following limit

𝑀 𝜃 𝑡 +△ 𝑡 = 𝐸𝑡+△𝑡 𝑒𝜃𝑥 𝑡+△𝑡 = 𝐸𝑡 𝐸𝑡 △⁄ 𝑡 𝑒𝜃 △𝑥 𝑡 +𝑥 𝑡

 
Thus,

    (6) 

3. The derivative of the moment-generating function exists 
and

Since  exists and depends on  
according to Eq. (6), 

    (7)

Theorem 1 follows from Eqs. (6) and (7). 

Theorem 2. If, for the above homogeneous Markov chain 
with  with continuous time, and with the state space 

, the functions  can be presented as polynomials of 
the form

and if the derivatives implied below exist, the following dif-
ferential equation holds true

 (8)

Proof. Taking into account that 

 				  

Eq. (1-3) can be cast in the form

which proves the theorem.

Theorem 3. If, for the above homogeneous Markov chain 
with , with  continuous time, and with the state space 

, the functions  can be presented as polynomials of 
the form

and if the derivatives implied below exist, the following dif-
ferential equation holds true

	

(9)
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Theorems synergic proccessing. Given that the derivatives 
 exist and that , the change of variables 

from  to  yields

    (10)

The left-hand sides of the above expressions exist, meaning 
that so do the corresponding right-hand sides. Consequently, 
the requirements of Theorem 2 are met. Substituting Eqs. (1-
10) into Eq. (8), one arrives at the result stated by Theorem 3.

The approach stemming from the above derivations is that 
the differential equation for the moment-generating function 
can be spelled out directly when the functions  are avail-
able. The practical applications of the above differential equa-
tions are examined below.

Application of outcomming algorithms.

1. Suppose that a two-dimensional homogeneous Markov 
chain  with the state space  and con-
tinuous time is treated and that, similarly, the transition intensi-
ties are non-negative functions such that  
. Then, if the pertinent derivatives exist, Eq. (8) affords the fol-
lowing generalization 

2. Consider a multidimensional Markov chain 
 with continuous time 

and the state space  and denote 
 . It can be demonstrated 

that, provided that the pertinent expected values and deriva-
tives exist, in the general case Eq. (3) translates into the vector 
equation

Applications of Bailey’s equation to kinetic schemes

First-order elementary chemical reaction: 

Suppose that the process of decay of substance A paralleled 
by the generation of substance B evolves with the probability  
per molecule: . The process is described by the function 

, and Bailey’s equations become 

or

or, alternatively 

so that 

Here  is the initial concentration of A, assuming that the 
initial dispersion of A is zero.

For the simplest reversible reaction , the formation 
of B is described by  and the decomposition – by 

,  being the random number of molecules of B. The 
corresponding Bailey’s equation is

or

Ligand-receptor interaction

Consider a ligand-receptor interaction , where R is 
the receptor, L is the ligand, RL is the ligand-receptor complex, 

 is the probability of formation of a complex molecule, and  
is the probability of its dissociation. If the random number of 
ligand-receptor complex molecules is , and the initial number 
of receptors is , the number of free receptors makes 
. Assume that the process unfolds under the condition of large 
ligand surplus, so that the number of ligand molecules stays 
equal to its initial value . The formation of ligand-receptor 
complexes is described by the function , and 
their decomposition – by . Bailey’s equation for the 
case is

or

or 

Contemporary pharmacology: Analysis and solutions

Pharmacokinetic outlook: A pharmacokinetic model of the 
dependence of drug concentration on time is used to gain in-
sight into the temporal character of the emergence of dose-re-
sponse relationships, the underlying assumption being that the 
drug is administered per os. In the simplest case, the process is 
described by the single-compartment model:

		   (11)

Here  is the drug mass at the intake location,  is 
the drug mass in bloodstream,  and  are the rates of drug 
administration and elimination from blood. The conditions that 
the drug is initially localized where it is being introduces are ex-
pressed as

  			   (12)

The law of mass action for scheme (11) and Eq. (12) is

The solution to the above set of equations is 

𝑚1 = 𝑀 exp −𝑘𝑙𝑡 ,𝑚2 = 𝑀 exp −𝑘𝑒𝑙𝑡 − exp −𝑘𝑙𝑡 .    (14)

 An analogous set of equations for a drug directly injected 
into the bloodstream is 

 (15)

its solution trivially being 

 	 (16)

(13)
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The forms of the solutions to Eqs. (13) and (14) are impracti-
cal, considering that the drug concentration in the bloodstream 
rather than its total mass is typically measured experimentally. 
Eqs. (13) and (14) can be conveniently transformed using the 
fact that drug concentration  and mass  are related as 

       	 (17)

where  is the blood volume. The latter may actually change 
due to a range of factors such as, for example, the use of diuret-
ics. However, it can be assumed if the drug does not affect di-
uresis that . Then, the combination of Eqs. (14) 
and (17) results in

 (18)

		         (19)

where  is the time-dependent drug concentration in the 
bloodstream and  is a constant denoting its initial effective 
concentration. The drug concentration increases initially and 
subsequently decreases. 

If the drug is directly injected into the bloodstream, the solu-
tion is more compact than the one defined by Eqs. (18) and (19)

     		  (20)

The latter expression shows that in this case the drug con-
centration in the bloodstream decreases monotonously.

Importantly, the majority of drugs in blood bind to transport 
proteins rather than stay in free state. The formation of the 
complex involving transport protein is described by the scheme

 				    (21)

where 𝐻 is the drug, 𝑃 is the blood protein, 𝐻𝑃 is their com-
plex, and  is the dissociation constant. 

The drug concentration generally tends to be much lower 
than that of the blood proteins. For example, the concentration 
of albumin, which is the key binding blood protein, is 10-5 M 
while the concentration of the nerve growth factor only reaches 
10-9-10-11 M [11, 12]. The concentration of the growth hormone 
is 0.5-2.0 nM [13, 14] while the concentration of the binding 
protein is 1.5 mM [11-14]. Therefore, the concentration of the 
drug-blood protein complexes for scheme (21) is

		  (22)

where  is the initial concentration of the drug. For most 
drugs,  and, accordingly, Eq. (22) becomes 

with . Then, the drug concentration is 

   (23)

where  is the binding constant. The value means that 
the drug undergoes no binding with blood proteins, and  
shows that all drug molecules are drawn into association with 
blood proteins. 

It may be the case that only bound drug (e.g. bilirubin) or 
only unbound agent (e.g. sex steroids) is excreted. In this situa-
tion, Eq. (23) is rewritten as 

 

where  is a constant such that  if only the bound 

form of the drug is excreted and  in the opposite case. The 
solution to Eqs. (14-24) is

     (25)

It should be noted that the underlying assumption in the 
analysis of biological effects which are due to the evolving drug 
concentration on the basis of Eq. (14-25) is that only the free 
form of the drug triggers response.

Ligand efficiency and molecular dynamics

Compound-level efficiency metrics are typically constructed 
by either scaling (i.e., divide affinity by risk factor) or offsetting 
(i.e., subtract risk factor from affinity) [2-7]. LE was introduced 
[1,8,11] as a metric to normalize affinity with respect to mo-
lecular size by scaling the standard free energy of binding, 
, by the number, , of non-hydrogen atoms (the term heavy 
atoms is also used) in the molecular structure as follows:	

     (26)

The standard state was not specified when the LE metric was 
introduced although it appears to be widely believed [15] that 
C° must be set to 1 M for calculation of LE. The Achilles heel of 
the LE metric is its nontrivial dependency [16] on C° and, as con-
ventionally [3,7] defined, LE has a 1 M concentration unit built 
into it. As noted in [5,6,17] the choice of a particular value of 
C°, such as 1 M, to define the standard state is entirely arbitrary 
and a requirement that C° only take a specific value cannot be 
accommodated within the framework of thermodynamics. This 
means that LE cannot be defined objectively in absolute terms 
for individual compounds because there is no physical basis for 
favoring a particular value of C° for calculation of LE.

Drug design guidelines are typically based on trends ob-
served in data and the strengths of these trends indicate how 
rigidly guidelines should be adhered to. While excessive mo-
lecular size and lipophilicity are widely accepted as primary 
risk factors in drug design, it is unclear how directly predictive 
they are of more tangible risks such as poor oral absorption, 
inadequate intracellular exposure and rapid turnover by meta-
bolic enzymes. This is an important consideration because the 
strength of the rationale for using LE depends on the degree 
to which molecular size is predictive of risk. Drug discovery sci-
entists need to be wary of correlation inflation [3-8,18] which 
can be loosely defined as presentation or analysis of data in any 
way that makes trends appear to be stronger than they actually 
are. Correlation inflation is a particular concern when analysis 
of proprietary data is presented in support of a view that a set 
of guidelines is especially useful or predictive.

The relevance of data must also be considered when using 
physicochemical characteristics such as molecular size to assess 
risk. For example, an activity threshold [4,19] of > 30% inhibi-
tion at 10  for promiscuity analysis is not especially relevant 
if considering the likelihood of off-target effects for a drug with 
a peak unbound plasma concentration of 100 nM. Sample bias 
can be significant, even in large datasets, as exemplified by di-
vergent conclusions of two apparently similar studies [7,10] 
with respect to the relationship between pharmacological 
promiscuity and molecular size. The observation that average 
molecular weight appears to decrease [1,9] with promiscuity 
is particularly relevant to the use of LE because promiscuity 
would generally be considered [8,20-22] to be an undesirable 
characteristic for a compound. Drug designers should not auto-
matically assume that conclusions drawn from analysis of large, (24)
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structurally-diverse data sets are necessarily relevant to the 
specific drug design projects on which they are working.

Thermodynamics aspects of ligand-protein association

The LE metric [4-10] was introduced in thermodynamic 
terms and it is sometimes believed that it measures the degree 
to which molecular interactions between ligand and target are 
optimal.

The standard free energy of binding, , [7,10] can be writ-
ten in terms of the gas constant (R), thermodynamic tempera-
ture (T), C° and the equilibrium concentrations of protein ([P]), 
ligand ([L]), and protein-ligand complex ([P.L]):

     (27)

Equation (27) shows that  is a function of C° and this 
is one reason that values of standard free energy of binding 
should not be termed absolute. By convention, C° is taken to 
be 1 M although, this is arbitrary and the value of C° has no 
physical significance [6-9]. In thermodynamic analysis, a change 
in perception resulting from a change in a standard state defini-
tion would generally be regarded as a serious error rather than 
a penetrating insight. In some situations, the dissociation con-
stant, KD, is defined to be equal to the argument of the loga-
rithm in equation (27) and is therefore dimensionless. However, 
in medicinal chemistry, biochemistry and biophysics, KD values 
are conventionally quoted in units of concentration and equa-
tion (27) can be written as:

(28)

Equation (28) shows that a tenfold increase in C° leads to 
a decrease in  of 1.36 kcal/mol at 298 K. The sign of  
has no special significance and simply indicates whether or not 
KD is greater or less than C°. The dependence of  on C° is a 
consequence of the stoichiometry of association of ligand with 
target and  for formation of a ternary complex (relevant 
when considering the thermodynamic consequences of frag-
ment linking) will exhibit a different dependence on C° to  
for a binary complex. The stoichiometry corresponding to a  
value is specified by the change, , in the number of species 
for the corresponding reaction and it can also be seen as a ‘hid-
den dimension’ of . For example, formation and dissociation 
of 1:1 complexes have  values of –1 and +1 respectively. The 
value of  determines the dimensions of the corresponding 
equilibrium constant:

     (29)

The dependence of  on C° is a consequence of the loss of 
translational entropy resulting from association and it has two 
important implications. First, ratios of  values also depend 
on C° even though the ratios themselves are dimensionless and 

 values should therefore be compared as differences (i.e., 
). Second, if a free energy change is written as a sum of free 

energy changes then the sum needs to have the same depen-
dency on C° as the original free energy change since the equal-
ity must hold for all values of C°. This is equivalent to requiring 
that the sum of  values for the components of a free energy 
decomposition be equal to the  value for the free energy 
change that is decomposed.

One way in which stoichiometry can be accounted for in free 
energy decompositions is to associate each free change with its 
corresponding  value using square brackets. The study on 
attribution and additivity of binding energies can be used to il-

lustrate this: the intrinsic binding energy for a group X as the 
difference in  for compounds in which X is present (AX) or 
absent (A) in the relevant molecular structures:

     (30)

The intrinsic binding energy is associated with a zero value 
of  and is therefore independent of C°. It shows the  val-
ue for a compound with linked groups A and В in its molecular 
structure as the sum of the intrinsic binding energies of A and B, 
and the “connection Gibbs energy” ( ):

     (31)

Equation (31) is particularly relevant to fragment linking and 
it is important to note that  does depend on C° [1, 2]. In 
some studies,  is decomposed into a value corresponding to 
zero molecular size ( ) and a  value [5,9]:

  (32)

One general approach to modelling affinity is to use equa-
tion (33) in which Ai (i > 0) is a parameter associated with the 
substructure i and ni is the number of occurrences of that sub-
structural element:

    (33)

The A0 term has the same dependency on C° as  and 
its inclusion in equation (33) allows changes in concentration 
unit to be easily accounted for. The substructures are typically 
groups at substitution sites on a scaffold and the ni values are 
either 1 or 0 and A0 may correspond to the affinity of the unsub-
stituted scaffold.

Schemes for decomposition of  based on equation (33) 
cannot be considered to be group additive because of the pres-
ence of the A0 term which is not associated with any group.

An equivalent way to examine the stoichiometry issue is to 
consider the implications of writing  as follows where 
corresponds to  as defined in equation (26):

    (34)

Consider two compounds X (KD = 10-3 M;  = 10) and Y 
(KD = 10-6 M;  = 20) that would usually be considered to 
be equally ligand-efficient (  = 0.4 kcal/mol per non-hydrogen 
atom at 298 К for C° = 1 M). While the values of  calculated 
for X (0.501 M0.1) and Y (0.501 M0.05) have the same numerical 
value, it is incorrect to equate them because their dimensions 
differ, as reflected by the difference in their respective units. If 
KD is expressed in millimolar units, the numerical values of  
for X (1 mM0.1) and Y (0.708 mM0.05) are no longer identical.

Some of the entropy of binding results from molecular inter-
actions (e.g., between water molecules) that are non-local with 
respect to protein-ligand contacts. Some contributions to bind-
ing enthalpy, such as the enthalpic penalties associated with 
ligand and target adopting their bound conformations are also 
inherently non-local. A less obvious example of a non-local ef-
fect would be substitution at one position of a molecular struc-
ture preventing a substituent at another position from forming 
optimal interactions with the target. When interpreting binding 
thermodynamics in terms of molecular interactions, it should 
always be kept in mind that intermolecular contacts (e.g., be-
tween unbound ligand and solvent) that are not present in the 
protein-ligand complex also influence and .
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Perception of affinity varies with concentration unit

Some of the problems that result from using LE as a design 
metric can be seen more clearly if it is expressed using a base 10 
logarithm and without energy units:

     (35)

The quantity  is related to  by a multiplicative fac-
tor of  that is independent of C° and therefore both 
quantities respond in an identical manner to a change in C°. One 
rationale for using  is that drug discovery scientists typi-
cally use pIC50 or pKD rather than  in «drug-target» analysis. 
The quantity  is also related to Ligand Efficiency by Atomic 
Number (LEAN) that is calculated by scaling pIC50 by . Un-
like LEAN,  is a function of C° and can also be written as 

 to emphasize this. Although standard state conventions 
do not apply to potency measures such as IC50 and EC50, which 
are usually quoted in  or nM, potency must still be scaled by 
a concentration value for the logarithm calculation because the 
logarithm function is not defined for dimensioned quantities. 
Using  rather than  reinforces the point that the prob-
lems associated with LE are due to the mathematical behavior 
of the logarithm function. While the use of a concentration unit 
other than 1 M to define LE is unusual, there certainly is prec-
edent for doing so.

LE is used to specify affinity cutoffs as a function of molecu-
lar size and a  value of 0.3 kcal/mol per non-hydrogen atom 
has been suggested [6,10]. Specification of affinity cutoffs in 
this manner forces the line defining acceptable affinity to inter-
sect the affinity axis at a point corresponding to a KD value of 1 
M. The minimum  value of 0.12 kcal/mol per non-hydrogen 
atom recommended can be translated (C° = 1 M; T = 300 K) 
to рКD values corresponding to the lower (700 Da;  50) 
and upper (3000 Da;  214) limits. The lower (pKD= 4.4) of 
these two values would not appear to be a useful design crite-
rion while the higher value (pKD= 18.7) would not generally be 
measurable. In general, affinity thresholds should be specified 
directly and LE should only be used for this purpose if support-
ed by the data.

LE features prominently in the literature of fragment-based 
lead discovery [7,20,21] to the extent that it is sometimes pre-
sented as an important rationale for screening fragments.

Comparison of LE values for fragment hits and the corre-
sponding leads can be seen as an attempt to quantify how ef-
fectively an increase in molecular size translates to affinity. This 
is still a valid objective even though the LE metric would appear 
to be unfit for this purpose. The most obvious way to do this is 
to scale by :

     (36)

Using  (the logarithm of a ratio of KD values) eliminates 
the dependency on C° that makes  (and ) unsuitable 
for comparison of start and end points for projects. An addi-
tional benefit is that  is likely to be relatively insensitive 
to the approximation of KD by IC50. This approach to assessing 
optimizations has precedent [4] and reported that a tenfold im-
provement in KD corresponded to a mean increase in molecular 
weight of 64 Da (standard deviation = 18 Da) for 73 compound 
pairs. Some other reports [3,8,10] also illustrates the benefit of 
observing the response of affinity to an increase in molecular 
size directly rather than indirectly by using the LE metric.

It can be useful to compare the changes in affinity and li-
pophilicity that result from structural elaboration and one way 
of achieving this is to offset the change in affinity by change in 
lipophilicity:

   (37)

The quantity in equation (37) may be regarded as a measure 
of the lipophilicity efficiency. It is desirable that it should be as 
large as possible most drug design cases studied. Variations of 
equation (37) can also be written using potency (e.g. pIC50) 
with a measured distribution coefficient (logD) or a predicted 
value of logP.

Observation that a small structural change leads to a large 
change in affinity is usually informative. Group Efficiency (GE) is 
defined for the addition of a group, X, to A by scaling the value 
of the associated  (  as defined in) by :

    (38)

The notation [X Y] can be used to specify structural trans-
formations and to indicate that a change in the value of a prop-
erty such as , pKD or  has been calculated by subtracting 
the value of the property for compound X from that for com-
pound Y. The definition of GE expresses equation (36) in terms 
of free energy rather than dissociation constant and equation 
(37) could be used in an analogous manner to specify the ef-
ficiency of substitutions from the perspective of lipophilicity. 
The fundamental difference between the two metrics is that 
GE is independent of C° because it is defined in terms of 
. Although GE is sometimes presented as a substructural (e.g. 
chloro substituent) property, it is actually structural transforma-
tions (e.g. substitute hydrogen with chlorine) with which values 
of GE should be associated. The  values used for calculation 
of GE cannot generally be interpreted as substructural contribu-
tions to affinity because summation of values of  (  = 0) 
cannot reproduce the dependency of  (  = – 1) on C°.

Maximal affinity of ligands

Drug discovery scientists typically need be able to address 
a range of questions when interrogating project data. For ex-
ample, it may be useful to focus analysis on the most active 
compounds in an optimization project. It is important to stress 
that residuals are not generated in isolation and they result 
from analysis that, arguably, should be performed anyway. The 
line fit to a plot of affinity against molecular size is likely to be 
a better predictor of outcome than a line that has been artifi-
cially forced to intercept the affinity axis at a point correspond-
ing to a KD value of 1 M. The strength of the trend also provides 
an indication of how useful normalization of the data is likely 
to be. For example, the observation of a very weak correlation 
between affinity and molecular size for hits from a fragment 
screen suggests that molecular size need not be accounted for 
when assessing the fragment hits in question. In an optimiza-
tion project, a relatively weak correlation between affinity and 
molecular size may point to the extent that it cannot be ade-
quately explained by molecular size alone.

Conclusions

A neglected Baileyan computational approach is now modi-
fied to renovate and improve the In Silico pharmacokinetic mod-
eling suitable for either preclinical trail planning or the drug- re-
ceptor docking scenaria analysis. This was found a promising 
research tool for the «drug-target» interaction analysis required 
by a contemporary drug design paradigm.
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LE has been discussed in depth from a physicochemical per-
spective in this study and the difficulty of interpreting affinity in 
terms of molecular interactions was highlighted. The nontrivial 
dependency of LE on the concentration unit in which affinity is 
expressed means that LE has no physical significance and, strict-
ly, should not even be considered to be a metric. As such, LE is 
unsuitable for ranking compounds, setting acceptability thresh-
olds for affinity and modeling relationships between affinity and 
molecular size. While it does not appear to be possible to quan-
tify efficiency of binding objectively for compounds in an abso-
lute manner, efficiency can still be defined in a relative manner 
by scaling affinity differences by the corresponding molecular 
size differences.

Abbreviations: C°: standard Concentration, GE: Group Effi-
ciency; IC50: half maximal inhibitory concentration; KD: dissocia-
tion constant; LE: Ligand Efficiency; logD: base 10 logarithm of 
octanol/water distribution coefficient; logP: base 10 logarithm 
of octanol/water partition coefficient; : number of non-
hydrogen atoms in a molecular structure; P: octanol/water 
Partition coefficient; pIC50: –log10(IC50/M); pKD: –log10(pKD/M); 
pKD[expt]: experimentally measured pKD; pKD[pred]: value of 
pKD predicted by model; pKD[resd]: residual рКD; R: gas constant; 
T: thermodynamic temperature; TIP: Target Interaction Poten-
tial; : ligand efficiency calculated from standard free energy 
of binding;  standard free energy of binding;  change in 
number of chemical species; : ligand efficiency calculated 
from logarithmically expressed KD without energy units.
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