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Introduction

For months, an ongoing pandemic caused by a single-strand-
ed RNA virus (SARS-CoV-2) has been one of the major challeng-
es facing the world. However, efforts are underway to keep up 
with the flood of coronavirus and no definitive cure has been 
reported to date. In general, the multiple stages of the SARS-
CoV-2 life cycle provide potential targets for drug therapy [1-
10]. 

 To fight the current pandemic, major attempts have been 
made to target the SARS-CoV-2 spike protein, RdRp (RNA-de-
pendent RNA polymerase), and cysteine proteases (Chemotryp-
sin-like protease or main protease (3CLpro or Mpro) and Papain-
like protease (PLpro)). In contrast to others, there are very few 
potent inhibitors of PLpro with efficacy validated experimentally 
[11]. The PLpro encoded within non-structural proteins (nsps) 
during the viral life cycle is one of the most promising targets 
for anti-SARS-CoV drugs [12]. Available crystal structures of 
PLpro reveal that this functional protein is composed of three 
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domains: (a) a classic catalytic triad cysteine cleavage domain 
(Cys111, His272, Asp286) (b) a Zn-binding domain (Cys189, 
Cys192, Cys224, and Cys226) and (c) ubiquitin domain (Asp164, 
Arg166, and Glu167). Besides these significant domains, distal 
from the cysteine active site, a newly identified binding pocket, 
“BL2 groove”, has been identified in recent articles (consisting 
of residues Leu162, Asp164, Arg166, Glu167, Pro247, Pro248, 
Tyr264, Gly266, Asn267, Tyr268, Gln269, Tyr273, and Pro299) 
[13-15]. Varieties of potent natural and synthetic compounds, 
from natural herbal ones or diverse antiviral drugs, are intro-
duced as therapeutic compounds (e.g., Remdesivir designed for 
the Ebola virus, Lopinavir/Ritonavir designed for the HIV, chlo-
roquine, and hydroxychloroquine designed for anti-malarial ac-
tion, etc.) [16-20]. These compounds are found to be effective 
but their efficacy still remains disputed. In this way, exploring 
the repurposing of existing drugs and developing new drugs are 
both of considerable interest [21]. 

Computer-aided drug design has been a reliable technique 
in designing novel and potent therapeutics. The availability of 
multiple experimental protein structures has led to coping with 
the challenge of protein flexibility and induced fit at a lower 
computational cost via the ensemble docking technique. In this 
way, trial compounds are docked into binding sites of the pro-
tein ensemble and then ranked according to their strength of 
binding to identify initial hits for further experimental studies 
[22,23]. 

The dynamics of proteins over their conformational ensem-
bles enable them to harness thermodynamic fluctuations for 
specific recognition of their targets, including small molecules. 
Different approaches have been designed to incorporate recep-
tor flexibility through ensemble docking. A receptor ensemble 
can be constructed computationally (e.g., molecular dynamics 
simulations, phase space sampling methods, etc.) or by using 
available experimental structures of different co-crystallized 
protein-ligand structures. However, the main challenge is se-
lecting a representative set of structures for an efficient dock-
ing simulation [24,25]. In this study, the pairwise RMSD matrix 
of general binding site residues for available X-ray structure of 
PLpro is calculated and the single-linkage hierarchical agglomera-
tive clustering method based on the Ward Variance Minimiza-
tion Algorithm was employed to detect representative protein 
structures [26,27].

The development of new antiviral drugs is time-consuming 
[28]. Therefore, to speed up the process, we used a new dock-
ing protocol in the framework of the ensemble docking strategy 
to identify SARS-CoV-2 PLpro inhibitors from an unbiased exist-
ing bioactive library containing 1916 FDA-approved drugs [29]. 
Since the safety of these drugs is well established and their ef-
ficacy can be quickly tested, drug repurposing could be an ef-
ficient approach to find potential inhibitors against COVID-19. 
The performance of the docking protocol has been evaluated 
in predicting the correct binding modes for the available crystal 
structures of PLpro-ligand complexes. 

Methods

PLpro structure preparation

To create a conformational ensemble of PLpro, 45 PLpro struc-
tures in the Protein Data Bank (PDB) were selected [30].��������� ��������All pro-

tein chains were characterized and analysed based on informa-
tion which recorded in their PDB files (e.g. mutated/modified 
residues, missing atoms/residues, ligands information, resolu-
tion, alternate���������������������������������������������������� ���������������������������������������������������locations, etc.) (Table S1 in the Supporting Infor-
mation). It is noteworthy that 12 protein-ligand complexes were 
covalently bonded to the thiol group of the Cys111 side chain in 
an irreversible manner. In addition, Cys/Ser mutation were ob-
served in Cys111 catalytic residue in 16 protein-chain structures 
(6WRH_A, 6XG3_A, 6YVA_A, 7CJD_D, 7CJD_A, 7CJD_B, 7CJD_C, 
7CJM_B, 7D47_A, 7D47_B, 7JIR_A, 7JIT_A, 7JIV_A, 7KOJ_A, 
7KOK_A, 7KRX_A). The 87 monomeric chains were identified 
from the 45 PDB files of the PLpro, which 36 of the chains were 
discarded due to having the missing functionally important 
segments in the catalytic pocket of the PLpro (which includes a 
Cys111-His272-Asp286 catalytic triad).

The intersection of residues involved in the formation of 
β-sheets in the thumb and palm domains which contain 41 resi-
dues was used to drive the structural alignment process (Table 
S2). All PLpro monomeric chains were aligned on the Cα atoms 
of the selected residues of 6WRH chain A as a reference struc-
ture, which is a high-quality crystal structure of the PLpro with a 
resolution of 1.6 Å. The pairwise RMSD values for all above Cα 
atoms between every pair of the aligned protein structures of 
the PLpro did not exceed 0.48 Å. Even though we are all aware 
that the average nature of the RMSD measure does not cap-
ture local structural changes/dissimilarities between structures 
[25], this small amount of RMSD indicates the significant con-
formational stability of β-sheets (in the presence or absence of 
ligands) for use in alignment staging. In the following sections, 
to gauge conformational changes and��������������������������� ��������������������������structural differences���� ���be-
tween two protein structures, pairwise RMSD values between 
the individual the same pairs of residues (including all backbone 
and side-chain atoms) belonging to various pairs of the aligned 
protein structures were evaluated. This subject will be clarified 
more in the next sections.

Defining PLpro active site 

The structural analysis of protein structures showed that 46 
out of 51 protein chains were in complex with at least one li-
gand - from very small molecular fragments to very large pep-
tidomimetic inhibitors. All the ligands were characterized by 
their approximated center and size which were defined by the 
centroid and the longest distance between two atoms of the 
ligands, respectively (Table S3). The distribution of ligands’ posi-
tion in the protein structure based on their scaled approximate 
bounding sphere is shown in Figure 1a. To create a lucid and 
tangible 2D-representation of ligand distribution in the Carte-
sian space of protein structure, a principal component analy-
sis (PCA) was done on the ligands’ centroid [31,32]. Figure 1b 
shows the projection of the ligands’ centroid distribution onto 
the subspace spanned by the first two principal components 
(PC1 and PC2) obtained from PCA. In Figure 1b, closed and over-
lapped circles occupy the same region on the protein surface. 
By considering Figures 1a and 1b, six separate regions are ob-
served on the protein space, the most populated one (33 out 
of 46) is located at the same region that is known as the PLpro 
binding site - a cleft between the thumb and palm domains [13-
15]. Other sparsely distributed ligands should be discarded for 
the binding site analysis.
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Figure 1: (a) Representation of ligands’ position distribution in pro-
tein structure and PLpro binding site. Defined active site is shown 
in orange and surface wired-frame representation. (b) Projection 
of ligands centroid distribution to the subspace spanned by PC1 
and PC2 on Cartesian coordinates of ligands centers.

In order to define PLpro’s general active site, for all holo forms, 
all interacting amino acids that had even one heavy atom at a 
cutoff of 3.5 Å were included in the definition. Therefore, a pock-
et that was defined with 21 unique amino acids was considered 
as the general binding site of PLpro to use in further calculations 
(Table S4 and Figure 1a). This binding pocket definition is in 
good agreement with other studies based on different methods 
[15, 21]. It should be noticed that after defining the general ac-
tive site, 6W9C chain A was omitted from protein structure data 
due to existing some missing residues in the active site.

 The “relative importance” of the general binding site resi-
dues was determined by the percentage of occurrence contacts 
of the residue in 33 protein-ligand complexes (see Table S4). For 
example, based on the “contact-importance” factor, Asp164 is 
the most important residue in PLpro active site. This amino acid 
is located at the ubiquitin domain of PLpro and plays a crucial 
role in protein activity [14,15]. Considering Table S4 shows that 
the general binding site includes all previous definitions of dif-
ferent PLpro domains (cysteine domain, ubiquitin domain, and  
BL2 groove) and is in good agreement with recent studies on 
PLpro active site [15, 33]. Relative importance data could be em-
ployed to select an optimal subset of PLpro residues for perform-
ing quantum mechanics (QM) calculations, especially for study-
ing covalent inhibition mechanisms [6,34]. 

Another notable parameter for the active site residues is 
their flexibility. Accordingly, “residue flexibility” (RF) was de-
fined as 𝑅𝐹 = 100 ∗𝑁𝑅𝑀𝑆𝐷 𝑁𝐶𝑜𝑚𝑝𝑙𝑒𝑥2 − 𝑁𝐶𝑜𝑚𝑝𝑙𝑒𝑥⁄ , where 𝑁𝑅𝑀𝑆𝐷  
is the number of pairwise RMSD matrix elements with values 
more than 0.7 Å and 𝑁𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is the number of complexes 
that RMSD calculation was done for their general binding site 
residues (3 complexes). In this way, the more flexible residues 
would have more RMSD matrix elements with values higher 
than 0.7 Å. The “relative importance” and the “residue flexibil-
ity” of the residues belonging to the general binding site have 
been displayed in Figure 2. For example, based on values re-
ported in Figure 2 and Table S4 Asp164, Tyr268, Tyr264, Gln269, 
Gly163, and Pro248 residues in more than 75% of the com-
plexes have effective contacts with their ligands (within the dis-
tance cutoff 3.5 Å). Consequently, such residues are important 
and should be considered for the determination of the binding 
pocket and this finding is in excellent agreement with recent 
studies [13-15]. Moreover, Thr301, Gly163, Asp164, Tyr264, 
Glu167, Gly271, and Pro242 have RF values lower than 60% and 
the loop structure. It did not seem farfetched that these most 
flexible residues belong to the BL2 groove. On the other hand, 
in comparison with other residues, Cys111 in the catalytic triad 

has the lowest flexibility. It is important to note that quantifying 
flexibility results can be used to identify and select an optimal 
set of flexible binding site residues for induced-fit docking (IFD) 
and flexible docking methods [35,36].

Figure 2: The “relative importance” and the “residue flexibility” of 
the residues belonging to the general binding site.

Conformational ensemble generation

In this step, the pairwise RMSD matrix of general binding site 
residues was calculated for all 51 PLpro chains, and the single-
linkage hierarchical agglomerative clustering method based on 
the Ward Variance Minimization Algorithm was employed to 
detect representative protein structures [26,27]. A conformer 
belongs to a cluster if not only the pairwise RMSD average val-
ues with all members of the cluster are less than 1.2 Å but also 
the number of the pairwise RMSD values greater than 2.0 Å is 
less than three. The clustering result is depicted in Figure 3. As 
can be seen in this figure, the clustering yields 8 clusters that 
the population of each cluster is mentioned in the boxes. As 
it turns out, by loosening the clustering criteria clusters will 
merge and the number of them will decrease. Given the clus-
tering constraints and the computational cost of calculations 
simultaneously, choosing eight conformers seems optimal for 
constructing a conformational ensemble of PLpro. In each cluster, 
structures with the lowest average RMSD than the others were 
selected as representatives. In cases where there were more 
than one representative conformer ones that had better resolu-
tion was chosen.  PDB IDs and their corresponding chains for 
the representative structures were depicted in Figure 3. 

Figure 3: Bottom-up tree dendrogram of the clusters obtained us-
ing Ward’s hierarchical method. The population of each cluster is 
given in each box and the PDB IDs of the representative structures 
for each cluster are also displayed below the boxes.

Ensemble docking 

For representative PLpro structures, hydrogen atoms, and 
missing atoms were retrieved using REDUCE software [37] and 
PSFGEN package within VMD software [38], respectively. During 
retrieving hydrogen atoms, side-chain flipping was considered 
based on the hydrogen-bonding patterns and the chemical en-
vironment, most of the histidine residues were protonated at 
Nε (i.e., HSE) and some of them were protonated at Nδ (e.g. 
His275). The prediction of protonation states and side-chain 
flips for the histidine residues found near the substrate-binding 
region can be found in Table S5. In addition, the basic residues 
(Arginine/Lysine) and the acidic residues (Aspartic/Glutamic) of 
all the structures were assigned positive and negative charges, 
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Protonated structures were optimized using the NAMD.2.13 
program [39] with the CHARMM36m force field and general-
ized Born implicit solvent (GBIS) to regulate the structure in the 
CHARMM36m force field, and in particular to reduce the steric 
conflicts that may occur in the system. Minimization was per-
formed for 20000 steps of the conjugated gradient where dur-
ing the first 10000 steps protein heavy atoms were restrained 
with a positional harmonic force of 200 kcal/mol·Å2 followed by 
10000 steps with the harmonic force of 100 kcal/mol·Å2. In all 
minimizations, the gradient has been reduced below 0.05 (kcal/
mol)/Å.

Three-dimensional structures of the FDA-approved drugs, 
containing 1993 compounds, were downloaded from the 
Cheminformatic Tools and Database for Pharmacology site in 
the structure-data file (SDF) format [40]. The structures with 
more than 20 rotatable bonds were excluded from subsequent 
calculations, due to the well-known fact that the docking suc-
cess rates decrease with increasing the number of active rotat-
able bonds [51,52]. In addition, six ligands that contain Boron 
element (B) were deleted from the ligands library due to the 
lack of force field parameters for this element. All 1910 remain-
ing ligands were geometrically optimized in the gas phase us-
ing the PM7 [41] semi-empirical quantum mechanics (SQM) 
method with MOPAC2016 [42] while the gradient norm was set 
to 10 kcal mol−1Å−1. It is noteworthy that the PM7 is a fast and 
successful SQM method that reliably describes various types of 
noncovalent interactions and some important chemical obser-
vations, such as the planarity of conjugated rings or molecular 
fragments [43].

The initial docking search space was determined based on 
the active site definition of PLpro – as described in section 2.2. 
This definition includes all the bound ligands from small-mole-
cule fragments to large peptidomimetic inhibitors at the catalyt-
ic binding site. Then the box size was extended by 5 Å in each of 
the three dimensions to ensure that the docking search space is 
large enough for the ligands to rotate in [44, 45]. The final dock-
ing box was included in a box of 20 × 23 × 27 Å3, centered on the 
mean of the geometric centers of all of the considered ligands.

Docking simulations were performed for all 1910 ligands and 
8 representative protein conformers with both AutoDock4.2.5.1 
and AutoDock Vina1.1.2 software [44, 45]. Input files of docking 
with AutoDock were prepared automatically with Python scripts 
provided by MGLTools [46] and a Lamarckian genetic algorithm 
with an initial population of 500 was repeated 200 times for 
each ligand-receptor complex, therefore 200 models are built 
in each run. A grid spacing of 0.375 Å and a distance-dependent 
function of the dielectric constant was used for the calculation 
of the energetic maps with the program AutoGrid4 [47]. The 
default settings were used for all other parameters. For Vina cal-
culations, the exhaustiveness parameter was increased to 500 
in order to enhance the probability of finding the proper ligand 
conformations [48]. Each Vina run generates 20 poses.

All optimized ligands (1910 ligands) were docked in the con-
formational ensemble of the 8 prepared representatives PLpro 
structures (described in Sections 2.3). In total, 1600 (= 8 × 200) 

poses by AutoDock and 160 (= 8 × 20) poses by Vina were cal-
culated for each ligand. All the predicted docking poses for each 
ligand were collected separately for each docking program and 
re-clustered based on the symmetry-corrected heavy-atom 
RMSD algorithm implemented in AutoDock4 with an RMSD cut-
off of 2.0 Å [29, 53-57]. As a result, all predicted poses of a given 
ligand into multiple different conformations of the PLpro binding 
site are simultaneously organized and clustered for identifying 
representative poses and subsequent analyses. It is noteworthy 
to mention that using an ensemble of rigid receptor conforma-
tions in docking simulations (i.e., ensemble docking) is the most 
common strategy to cope with the receptor flexibility problem 
in rigid docking procedures [23,29,49,50]. Additionally, ligands 
flexibility are considered based on active rotatable bonds dur-
ing the docking calculations, despite the fact that the docking 
success rates decrease with increasing the number of active ro-
tatable bonds [51, 52].

Results and discussion

Based on our recent researches, the top-ranked poses (with 
the lowest-energy poses) from the first and the most populated 
clusters are chosen as the representative poses for each docked 
ligand [29,43,53]. Therefore, we focus on the two representa-
tive docking poses for each ligand and use their docking scores, 
instead of considering the mean over docking score of the top-
ranked poses of all representative PLpro conformations or tak-
ing the best-scoring binding poses from an aggregation of all 
predicted docking poses (the lowest scoring poses of ensemble 
docking), as routinely utilized in an ensemble docking protocol 
[23,49,50,55,56]. 

The above-mentioned computational pipeline (including the 
structural clustering strategy to construct the protein ensemble 
for performing docking calculations and the proposed manner 
to choose the representative docking poses from the ensemble 
docking results) has already been used for correctly predicting 
experimental binding poses and affinity ranking of Mpro-ligand 
complexes [29] and thus can be utilized to properly produce a 
rank-ordered list of the FDA-approved drugs. Accordingly, two 
rank-ordered lists of the docked FDA-approved drugs have been 
produced for each of both AutoDock and Vina software, one for 
those called the first clusters and others for the most populated 
clusters. The top 20 FDA-approved drugs for both the first and 
the most populated clusters are shown in Table 1 (the top 100 
compounds are given in Tables S6 and S7 in the Supporting In-
formation).

The analysis and comparison of the screening results show 
that there are several common drugs among the top 100 
ranked-ordered lists of the aforementioned protocols. Eventu-
ally, 20 common FDA-approved drugs were found in all tables 
obtained from the representative poses of the first clusters 
and the most populated clusters (Tables S6,S7). These 20 com-
mon drugs and their medical uses in the treatment of different 
diseases and their 2D-chemical structures are shown in Table 
2 and Figure S1. From the computational viewpoint, it means 
that these FDA-approved drugs target the PLpro protein and can 
be considered potential antiviral drug candidates in the treat-
ment of COVID-19.
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Table 1: The top 20 FDA-approved drugs obtained from the top-ranked poses of the first and the most populated 
clusters (using AutoDock and Vina software).

First clusters Most populated clusters

AutoDock Vina AutoDock Vina

Rank Drug Names Drug Names

1 VENETOCLAX CONIVAPTAN PLERIXAFOR CONIVAPTAN 

2 CAPMATINIB OLAPARIB GENTAMICIN PAZOPANIB

3 IMATINIB LUMACAFTOR LURASIDONE TROVAFLOXACIN

4 ZAFIRLUKAST NILOTINIB THIOTHIXENE VEMURAFENIB

5 PLERIXAFOR PAZOPANIB PONATINIB TELMISARTAN

6 CABOZANTINIB TROVAFLOXACIN M RIFAPENTINE PHENYTOIN

7 IRINOTECAN VEMURAFENIB PIMECROLIMUS DOLUTEGRAVIR 

8 GENTAMICIN TELMISARTAN ERIBULIN ADAPALENE

9 LURASIDONE PHENYTOIN BRIGATINIB BEXAROTENE 

10 SIMEPREVIR DOLUTEGRAVIR TUCATINIB TIPRANAVIR 

11 THIOTHIXENE BICTEGRAVIR NETARSUDIL MAZINDOL 

12 PONATINIB ENTRECTINIB ZANUBRUTINIB PERAMPANEL 

13 M RIFAPENTINE ADAPALENE CALCIFEDIOL OLAPARIB 

14 PANCURONIUM TROGLITAZONE CALCITRIOL IMATINIB 

15 NALDEMEDINE BEXAROTENE SIMEPREVIR LUMACAFTOR 

16 TUCATINIB TIPRANAVIR IVERMECTIN NETARSUDIL 

17 EVEROLIMUS MAZINDOL TIPRANAVIR FEXOFENADINE 

18 CILOSTAZOL CARBENICILLIN INDANYL IMATINIB NILOTINIB

19 PIMECROLIMUS TROGLITAZONE PIPERACETAZINE GLYBURIDE

20 ERDAFITINIB PERAMPANEL RALOXIFENE BINIMETINIB

Table 2: Docking scores (in kcal.mol-1) of the top 20 common FDA-approved drugs (obtained from the 100 top-ranked 
poses of Tables S6 and S7).

No. Name
First clusters Most populated clusters

Used in the treatment of:
AutoDock Vina AutoDock Vina

1 IMATINIB -11.95 -9.30 -10.54 -9.30 Lymphoblastic and Chronic leukemia

2 SIMEPREVIR -11.20 -8.80 -10.59 -8.80 Chronic Viral Hepatitis C

3 NALDEMEDINE -11.07 -9.00 -9.61 -8.50 Constipation 

4 TUCATINIB -11.07 -9.30 -10.71 -9.10 Breast Cancer

5 ERDAFITINIB -10.94 -8.80 -10.41 -8.80 Metastatic Urothelial Carcinoma

6 BRIGATINIB -10.81 -8.90 -10.81 -8.50 Lung Cancer

7 NILOTINIB -10.80 -9.70 -10.17 -9.20 Chronic Myelogenous Leukemia

8 ELTROMBOPAG -10.76 -9.10 -10.08 -9.10 Cancer

9 TELMISARTAN -10.70 -9.60 -10.12 -9.60 Hypertension

10 NETARSUDIL -10.66 -9.30 -10.66 -9.30 Glaucoma or Ocular Hypertension

11 ZANUBRUTINIB -10.64 -9.40 -10.64 -8.70 Mantle Cell Lymphoma (MCL)

12 TIPRANAVIR -10.56 -9.50 -10.56 -9.50 HIV infection and AIDS

13 RISPERIDONE -10.53 -9.00 -9.72 -9.00 Mania and Schizophrenia

14 PALIPERIDONE -10.48 -9.00 -9.85 -9.00 Schizophrenia

15 CERITINIB -10.33 -8.90 -9.63 -8.80 Lung Cancer 

16 LUMACAFTOR -10.31 -9.80 -9.93 -9.30 cystic fibrosis

17 AVAPRITINIB -10.29 -8.90 -10.29 -8.90 Metastatic Gastrointestinal Stromal Tumours

18 MENTRECTINIB -10.22 -9.20 -10.22 -9.20 Lung Cancer

19 BAZEDOXIFENE -10.21 -9.00 -10.21 -9.00 Vasomotor Symptoms and  Menopause

20 PERAMPANEL -10.16 -9.40 -10.16 -9.40 Partial Onset Seizures
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The screening results show that a number of cancer drugs 

(IMATINIB, TUCATINIB, ERDAFITINIB, BRIGATINIB, NILOTINIB, 
ELTROMBOPAG, ZANUBRUTINIB, CERITINIB, AVAPRITINIB, 
MENTRECTINIB), schizophrenia drugs (RISPERIDONE, PALI-
PERIDONE), hypertension drugs (TELMISARTAN, NETARSUDIL), 
hepatitis C drug (SIMEPREVIR) and HIV infection and AIDS drug 
(TIPRANAVIR) display high binding affinities to PLpro protein. 
Our results are in agreement with others’ work that introduce 
possible drug candidates as PLpro inhibitors (e.g. Antivirus, An-
tihypertensive, Antibacterial, Antipsychotic, Anti-tumor, and 
anti-hepatic drugs) [58-61]. They demonstrate that some FDA-
approved drugs that are used in the treatment of other diseases 
can be used as therapeutic agents in COVID-19. (e.g. Acetophen-
azine, Sulfasalazine, Dutasteride, Atovaquone). It is noteworthy 
that these drugs have also appeared in our 100 top-ranked lists. 

A detailed survey of the chemical structures in Figure S1 
demonstrates that most of the top-ranked compounds are 
Naphthalene-based that are of particular interest for their in-
hibitory activity against SARS-CoV-2 PLpro [60-63]. In some inhib-
itors, the Naphthyl ring is replaced with a biaryl group scaffold. 
It has been shown that this replacement is a promising develop-
ment in this class of inhibitors as it likely represents a metabolic 
liability along the path to the clinic [64]. These findings can in-
spire the discovery of a new generation of naphthalene-based 
PLpro inhibitors.

A detailed insight into the contacts and noncovalent inter-
actions in docking-generated complexes has been obtained by 
LigPlot [65]. Careful inspection of the results shows that most 
of the 20 common ligands are located in the “BL2 Groove” bind-
ing pocket and Ubiquitin domain that are far from the classical 
catalytic triad. As mentioned before, the “BL2 Groove” is po-
sitioned at the N-terminal side of the BL2 loop and composed 
of hydrophobic amino acids such as Pro299, Pro248, Tyr264, 
Pro247, Gln269 and hydrogen bonding residues such as Gly266, 
Tyr268, Leu162, Asn267, Tyr273, Arg166, and Asp164. The 
strong hydrogen bonding and hydrophobic interaction between 
FDA-approved drugs with the enzyme imply that they can be 
potent PLpro inhibitors (Figure4 and Figure S2). Additionally, the 
inhibitors' orientations show that the BL2 loop is in direction 
of the catalytic site and occupying the BL2 groove can disrupt 
access to this site and affect the protein function by preventing 
the substrate from entering the active site in a non-competitive 
inhibition manner [60]. These results are in agreement with 
others' works and confirm the possibility of identifying alloste-
ric inhibitors against SARS-CoV-2 PLpro [14, 66]. 

Conclusion

The SARS-CoV-2 papain-like protease (PLpro), is a key target 
for the design of inhibitors to tackle virus activity in host cells. 
Lately, computer-aided drug design techniques are reliable, af-
fordable, and less time-consuming in designing novel therapeu-
tics. 

The objective of this work is the identification of potential in-
hibitors of SARS-CoV-2 PLpro protease from FDA-approved drugs 
using molecular docking. In this work, we used a new docking 
protocol in the framework of the ensemble docking strategy to 
identify SARS-CoV-2 PLpro inhibitors from a library containing 
1910 FDA-approved drugs against PLpro proteases. The compu-
tational pipeline and its reliability are discussed in our recent 
work for Mpro-ligand complexes and has now been employed to 
properly rank 1910 FDA-approved drugs during their screening 
against PLpro target [29]. In this way, 100 top-ranked of drugs for 

Figure 4: Docked complexes and binding details of the two drugs 
from 20 common FDA-approved drugs. Hydrogen bonds are 
shown as dotted green lines. Residues involved in hydrophobic 
interactions are represented as lines in red and ligand atoms in 
hydrophobic contacts are surrounded by red lines.

four different used protocol were introduced and 20 common 
compounds were analyzed in detail. It has been shown that the 
highly flexible BL2 loop can regulate the binding cavity acces-
sibility and besides the catalytic triad, the “BL2 Groove” should 
be considered as an allosteric pocket. 

We demonstrate that some FDA-approved drugs which are 
used in the treatment of cancer, schizophrenia, hypertension, 
hepatitis C, HIV infection, and AIDS exhibit high binding affinity 
to PLpro protein and can be used as therapeutic candidates in the 
treatment of COVID-19. Obviously, performing comprehensive 
molecular dynamics (MD) simulations, experimental assays, 
and clinical trials are necessary to confirm their actual activity 
against COVID-19.

From a chemical scaffold point of view, we show that 
naphthalene-based drugs along with biaryl group substituted 
compounds have inhibitory activity against SARS-CoV-2 PLpro. 
Ensemble docking studies accented to the non-competitive in-
hibition mechanism and confirmed the existence of allosteric 
sites in the PLpro structure. The binding mode analysis confirms 
the contribution of hydrogen bonds along with extensive hydro-
phobic interactions to the inhibition of activity.
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