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Abstract

Stomach adenocarcinoma (STAD) patients are often associated with significantly high mortality 
rates and poor prognoses worldwide. Among the STAD patients, competing endogenous RNAs (ceR-
NAs) play key roles in regulating one another at the post-transcriptional stage by competing for shared 
miRNAs.

In this study, we aimed at elucidating the roles of lncRNAs in the ceRNA network of STAD, uncover-
ing the molecular biomarkers for target therapy and prognosis. Specifically, a multitude of differen-
tially expressed lncRNAs, miRNAs, and mRNAs (i.e. 898 samples in total) were collected and processed 
from TCGA. Cytoplasmic lncRNAs were kept for evaluating overall survival (OS) time and constructing 
the ceRNA network. Differentially expressed mRNAs in the ceRNA network were also investigated for 
functional and pathological insights.

Interestingly, we identified one ceRNA network including 13 lncRNAs, 25 miRNAs, and 9 mRNAs. 
Among them, 13 RNAs were found related to the patient survival time; its individual risk score can be 
adopted for prognosis inference. Finally, we constructed a comprehensive ceRNA regulatory network 
for STAD and developed our own risk scoring system that can predict the OS time of STAD patients by 
taking into account the above.

Keywords: Stomach adenocarcinoma (STAD); Competing endogenous RNA (ceRNA); Prognosis; 
Long non-coding RNA (lncRNA); Risk model.

Introduction

Stomach adenocarcinoma (STAD) is a devasting digestive 
tract disease that is prevalent across the world. As the fourth 
most frequent cause of cancer-related deaths worldwide and 
the fifth most common malignancy, gastric cancer(GC) con-
tinues to be a challenge for global health [20]. In 2020, there 
were more than 1 million new cases and an estimated 769,000 
deaths, with China accounting for nearly half of both [53]. STAD 
makes up more than 95% of instances of GC [42]. Age, high 
salt intake, alcohol, and active cigarette use are all considered 
critical risk factors for this condition [63]. The competing en-
dogenous RNA (ceRNA) hypothesis, an as-yet-unknown theory 

of how gene expression is regulated, was initially put forth by 
[47]. The development of STAD is strongly connected with the 
ceRNA regulatory network. In STAD, a prognosis-related ceRNA 
network has yet to be discoveredsystematically and compre-
hensively [40].

Non-coding RNAs having more than 200 nucleotides in 
length are referred to as long non-coding RNAs (lncRNAs), 
which lack the ability to code for proteins but have the power to 
control gene expression [14]. Short single-stranded RNAs called 
microRNAs (miRNAs), also known as non-coding RNAs, typi-
cally include 18-23 nucleotides. MiRNAs can limit the spread 
of cancer by acting as oncogenes or suppressors [51]. The de-
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creased gene expression by specifically binding to the 3’UTR 
of downstream target mRNAs. In order to restore the activity 
of downstream mRNAs, lncRNAs can function as ceRNAs that 
bind to miRNAs [69]. Cell proliferation, migration, and invasion 
are some biological processes regulated by the regulatory net-
work connecting lncRNAs, miRNAs, and mRNAs. Cell growth 
and development are impacted by ceRNA network disruption, 
which frequently results in numerous illnesses, particularly can-
cer [52]. In STAD, lncRNAs, miRNAs, and mRNAs work together 
rather than just interacting directly. For example, according to 
Huang et al. research, the IGF2-AS-miR-503-SHOX2 ceRNA net-
work was responsible for IGF2-AS’s role in promoting tumor 
growth and invasion [18]. Zong et al. point out that the RhoA 
signaling pathway allowed the CTC-497E21.4-miR-22-3p-NET1 
ceRNA network to play beneficial functions in the evolution of 
GC [71].

Researchers are increasingly adopting statistical algorithms 
to investigate novel diagnoses and therapy targets due to preci-
sion medicine’s quick progress. Exploring the relationship be-
tween genomic features and clinical characteristics was made 
possible because of the TCGA database source. The TCGA 
team has so far used integrated multi-dimensional analytics 
and wide-scale genome sequencing to examine large cohorts 
of more than 30 human tumors. Research on specific cancer 
types as well as thorough assessments of all cancers, has added 
to our understanding of carcinogenesis. For example, Li et al. 
constructed a ceRNA network using 15 differentially expressed 
mRNAs, one differentially expressed miRNA, and two differ-
entially expressed lncRNAs using integrated analysis based on 
TCGA [34]. Liu et al. explored the interactions between differ-
entially expressed lncRNA, miRNA, and mRNA in TCGA and es-
tablished a lncRNA-miRNA-mRNA network in clear cell renal cell 
carcinoma [31]. Gao et al. identified early diagnostic and prog-
nostic biomarkers for liver cancer based on studies on TCGA 
RNA-seq and clinical information data [13].

In this study, we systematically and comprehensively identi-
fied survival-related ceRNA networks in STAD. The study of can-
cer from a molecular perspective has recently been a research 
hotspot due to advancements in diagnostic technologies and a 
deeper understanding of cancer gene maps. This has also led to 
improvements in the study of the molecular basis of treatment 
for patients with STAD. A flow diagram for the Construction of 
the ceRNA network is shown in Figure 1.

Figure 1: The schematic workflow of ceRNA regulatory network 
construction in STAD.

Materials and methods

Data collection and pre-processing

We downloaded lncRNA, miRNA, mRNA expression profile, 
and their clinical information data from TCGA (https://www.
cancer.gov/tcga) database using TCGAbiolinks (version: 2.25.0) 
R package [10]. For RNA-seq data (lncRNA and mRNA), we ob-
tained 407 STAD samples (375 tumor and adjacent 32 normal 
samples). For miRNA-seq (miRNA), we obtained 491 STAD sam-
ples (446 tumor and 45 adjacent normal samples). The gene 
type information came from GENCODE (https://www.genco-
degenes.org/, version: GRCh38/hg38). We defined the follow-
ing six gene types as lncRNAs: sense_overlapping, lincRNA, 
3prime_overlapping_ncrna, processed_transcript, antisense, 
and sense_intronic.

Identification of DEGs

Differentially expressed genes (DEGs) were identified with 
edgeR (version: 3.38.1) R package [46]. The criteria for select-
ing differentially expressed lncRNAs, miRNAs, and mRNAs is 
|log2(fold change)|> 1 and FDR < 0.05. Three volcano plots 
were utilized to visualize DEGs (lncRNAs, miRNA, and mRNA). 
We treated the genes as up-regulated genes if they were signifi-
cantly up-regulated in STAD tumor samples compared to adja-
cent normal samples, while we treated the genes as down-reg-
ulated genes if they were significantly down-regulated in STAD 
tumor samples compared to adjacent normal samples.

Interaction annotations

Interactions between lncRNAs and miRNAs: The miRCode 
(http://www.mircode.org/) database [21] was used for infer-
ring putative miRNA target sites in the lncRNA. We exported 
the interacted miRNAs from miRCode (version: 11, June 2012) 
for differentially expressed lncRNAs.

Interactions between miRNAs and mRNAs: We adopted a 
strategy based on the vote for improving the reliability of miR-
NA and mRNA interactions following published methods [2,7]. 
If an interaction occurred in twice of the following three data-
bases, miRDB(http://www.mirdb.org/, version: 6.0, June 2019) 
database [9], miRTar Base database (https://mirtarbase.cuhk.
edu.cn/~miRTarBase/miRTarBase_2022/php/index.php, ver-
sion: 9.0, September 2021) [17], and TargetScan (https://www.
targetscan.org/vert_80/, version: 8.0, 23 May 2022) database 
[37], we picked up this interaction.

Subcellular localization of lncRNAs

We used the lncLocator (http://www.csbio.sjtu.edu.cn/bio-
inf/lncLocator/) database [5] to look into the lncRNAs' intracel-
lular location because they can only serve as nodes of the ceRNA 
network in the cytoplasm. The locLocator is an ensemble clas-
sifier-based predictor exploiting lncRNA sequence information. 
So, we exported the sequences from the GENCODE database's 
lncRNA transcript sequence information (version: GRCh38/
hg38). Then, lncRNA sequences were uploaded into the lncLo-
cator database. The subcellular locations consist of cytoplasm, 
nucleus, cytosol, ribosome, andexosome in the locLocator.

Construction of ceRNA network

Cytoscape (http://www.cytoscape.org/, version 3.9.0) [48] 
software was utilized for visualizing the locations of lncRNAs 
and ceRNA networks.
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Functional enrichment annotation of DEGs

We used DAVID (The Database for Annotation, Visualization, 
and Integrated Discovery, https://david.ncifcrf.gov/) to carry 
out GO enrichment analysis in order to investigate the role of 
differentially expressed mRNAs in the ceRNA network [16,50]. 
The chord diagrams were created using the GOplot R package 
(version 1.0.2). In addition, the KEGG (Kyoto Encyclopedia of 
Genes and Genomes, https://www.genome.jp/kegg/) signaling 
pathway enrichment analysis of mRNAs in the ceRNA network 
was carried out using the cluster Profile (version 4.4.4) package 
in R [41,24,22,23,25].

Optimal cutoff selection and Kaplan-Meier survival analysis

There is no difference in survival analysis in many cases when 
using specific locations, such as median, mean, quartile, etc., as 
the cutoff point. At this time, it is often necessary to find an op-
timal cutoff point to make a difference in survival analysis. The 
surv_cutpoint() function in survminer (version: 0.4.9) package R 
was utilized to display the distribution of gene expression levels 
and determine the optimal cutoff for survival analysis [30,54]. R 
package survival (version: 3.3.1) was used for visualizing the dif-
ference between low- and high-expression groups classified by 
the obtained optimal cutoff. P-values below 0.05 were regarded 
as significant.

Creation of risk scoring model

The upstream region of the ceRNA network is dominated 
by lncRNAs, which serve as the main miRNA and mRNA effec-
tors [67,28]. Additionally, lncRNAs are very particular in their 
expression and distribution, making them the best possible bio-
markers for diagnosing and evaluating the prognosis of STAD 
[6,15]. The survival (version: 3.3.1) R package was used to cre-
ate a risk-scoring model for lncRNAs in the ceRNA network.The 
multivariate Cox regression model included LINC00486 and 
LSAMP-AS1 to make the independent prognostic signature for 
STAD (P-value ≤ 0.05). The following formula was used to calcu-
late the risk score for each patient:

risk score =  � 𝐸𝑥𝑝𝑖 × 𝑖𝛽
𝑛

𝑖

Here, 𝐸𝑥𝑝𝑖 represents the expressionlevels of lncRNA. β rep-
resents the regression coefficient of multivariate Cox regression 
for lncRNA.

Univariate and multivariate Cox regression

Mining the independent factors is essential for prognostic 
analysis for cancer research [32]. Univariate Cox regression 
analysis was conducted to determine whether the clinical char-
acteristics, such as age, gender, stage, tissue of origin, primary 
diagnosis, AJCC T, AJCC M, AJCC N, race, and risk score, were sig-
nificantly associated with overall survival (OS) in STAD patients 
(P-value ≤ 0.05). Then, all clinical factors were compared at one 
time to identify independent prognostic factors (P-value ≤ 0.05). 
The coxph() function in survival (version: 3.3.1) R package was 
applied for univariate and multivariate Cox regression analysis. 
And forestplot(version: 2.0.1) R package was applied for visual-
izing the results.

Linear regression analysis of lncRNAs and mRNAs

The ceRNA mechanism theory states that lncRNAs interact 
directly with miRNAs to influence mRNA expression favourably 
[65]. Using R software and ggpubr (version: 0.4.0) package, lin-
ear regression analysis of the log2 transformed normalized the 

ceRNA network's lncRNA, and mRNA expression levels were 
performed. The results were displayed via ggscatter() function. 
We regarded there as a statistically significant correlation be-
tween lncRNA and mRNA if their P-value ≤ 0.05 and cor> 0.3.

Results

Differentially expression of lncRNA, miRNA, and mRNA

One can study the differences between tumor and adjacent 
normal samples to determine the genetic origin and biological 
pathways, therefore, identifying potential targets for treating 
cancer [39]. Identification of DEGs is vital for cancer research 
[66]. From the TCGA database, we obtained the expression 
profiles of 2,366 lncRNAs, 1,881 miRNAs, and 19,431 mRNAs.
With the criteria of |log2(fold change)|> 1 and FDR < 0.05, a 
total of 380 differentially expressed lncRNAs, 143 differentially 
expressed miRNAs, and 4,344differentially expressed mRNAs 
were selected.

Two hundred and seventy differentially expressed lncRNAs, 
95 differentially expressed miRNAs, and 2,220 differentially ex-
pressed mRNAs were among those that were up-regulated in 
STAD tumor samples compared to adjacent normal samples, 
and 110 differentially expressed lncRNAs, 48 differentially ex-
pressed miRNAs, and 2,124 differentially expressed mRNAs 
were among those that were down-regulated (Figure 2A-C). 
They were regarded as essential genes involved in the early in-
cidence of STAD.

Figure 2: Volcano plots of differentially expressed lncRNAs (A), 
miRNAs (B), and mRNAs (C). The red dots indicate up-regulated 
genes, while the blue dots indicate down-regulated genes in STAD. 
The x-axis represents the log2 (fold change), while the y-axis repre-
sents the -log10(FDR).

Interactions between lncRNA and miRNA

Using the miRCode database, we firstly identified possible 
miRNAs interacting with 380 DE lncRNAs. The interacting genes 
between the 143 DE miRNAs and the predicted miRNAs were 
then identified. Finally, we discovered 28miRNAs and 26ln-
cRNAs with the potential for mutual interaction (Table S1).

Interactions between mRNA and miRNA

By using mRNAs targeted by miRNAs shared by two out of 
three databases (miRDB, miRTarBase, and TargetScan), we iden-
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tified target genes for the 26 miRNAs mentioned above, which 
increased the accuracy of the bioinformatics prediction. Then, 
we contrasted potential target mRNAs with 1,535 mRNAs that 
had differential expressions. Finally, the ceRNA network was es-
tablished through miRNA-mRNA interaction pairs, including 16 
mRNAs and three miRNAs (Table S2).

Subcellular localization of lncRNA and construction of ceR-
NA network

The endogenous competition role of lncRNAs is mainly mani-
fested in the cytoplasm, making it imperative to examine the 
cytoplasmic-nuclear localization of these lncRNAs in order to 
understand their complex but precise regulatory processes bet-
ter [12]. We counted and drew the distribution of 26 lncRNAs 
using Cytoscape.In this study, we identified 13 lncRNAs located 
in the cytoplasm of the cell using lncLocator software (Figure 3A 
and Table S3).

After taking into account the interactions between the re-
maining DEGs, a final STAD ceRNA regulatory network with 47 
nodes and 98 edges was created by combining 13lncRNAs, 25 
miRNAs, and nine mRNAs. The ceRNA network was visualized 
by Cytoscape software (Figure 3B).

GO term and KEGG pathway

The nine mRNAs in the ceRNA regulatory network were in-
vestigated concerning their putative biological functions and 
pathways. We conducted GO functional enrichment analysis 
on the DAVID database and reported significant enriched GO 
terms. There are 18 significant GO terms enriched by mRNAs in 
the ceRNA network (P-value ≤ 0.05, Table S4). We used a chord 
figure to visualize the enrichment results (Figure 3C). The top 
five GO terms among these were "transcription factor activity, 
sequence-specific binding", "nucleoplasm", "chromatin", "RNA 
polymerase II core promoter proximal region sequence-specific 
DNA binding", and "positive regulation of cell proliferation".

Figure 3: The identification and functional annotation of ceRNA 
network. (A)The predicted subcellular localization of lncRNAs. The 
red hexagon indicates the predicted location of lncRNA, and the 
yellow circle indicates lncRNA. (B) ceRNA network. The orange cir-
cle indicates lncRNA, the purple diamond indicates mRNA, and the 
green triangle indicates miRNA. (C)The chord diagram of mRNAs 
with GO term. The left circle indicates mRNA. For genes, the red 
color represents up-regulated, while the blue represents down-
regulated genes in STAD.The right circle indicates GO term. (D) The 
barplot visualization of mRNA functional enrichment results.

KEGG was also selected for annotation of the function of 
mRNAs in the ceRNA network. The R package clusterProfiler 
was utilized to perform gene enrichment analysis and visualize 
the results (Figure 3D). mRNAs in the ceRNA network enriched 
in 14 significant KEGG signaling pathways (P-value ≤ 0.05). The 
top five KEGG pathways among these were "Chronic myeloid 
leukemia", "MicroRNAs in cancer", "Bladder cancer", "Lysine 
degradation", and "Acute myeloid leukemia".

Survival curves of ceRNA network-related genes

Kaplan-Meier survival analyses and log-rank tests for each 
gene were carried out to assess the contributions of gene ex-
pression levels to global OS time [32]. Thirteen lncRNAs, 25 
miRNAs, and nine mRNAs were put into this survival analysis 
model in order to identify the probable genes with substantial 
associations with the prognostic characteristics of patients with 
STAD. The cutoff value was set based onsurv_cutpoint() func-
tion from survminer R package. There are 18 genes, including 
twolncRNAs, 12 miRNAs, and four mRNAs,that significantly dif-
fer between low- and high-expression levels groups (P-value 
≤0.05, Table S5). We selected two genes for each gene type (ln-
cRNA, Figure 4(A-B): LMO7-AS1 and MRVI1-AS1; miRNA, Figure 
4C-D:hsa-miR-100 and hsa-miR-187; and mRNA, Figure 4E-F: 
AFF3 and PROX1) to illustrate the difference in survival prob-
ability grouped by gene expression levels.

Figure 4: Kaplan-Meier survival analysis of selected lncRNA 
(A: LMO7-AS1; B: MRVI1-AS1), miRNA (C: has-miR-100;D: has-
miR-187), and mRNA (E: AFF3; F:PROX1) in STAD. The x-axis rep-
resents the survival time, while the y-axis represents survival prob-
ability. The table counts the number of patients for each group.

Construction of risk score model

LncRNAs, which act as the primary miRNA and mRNA effec-
tors, predominate in the upstream area of the ceRNA network 
[67,28]. Also, lncRNA hashighly specific expression distribution 
patterns, making them the ideal biomarkers for identifying STAD 
and guiding its prognosis [6,15]. Therefore, multivariate Cox re-
gression analysis was used to determine possible prognostic-re-
lated lncRNAsbased on the 13 lncRNAs in the ceRNA regulatory 
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network, and their contributions were weighted by their rela-
tive coefficients.The risk score model was then updated to in-
clude LINC00486 (P-value = 0.031 and HR = 1.002 (1.000-1.003))
and LSAMP-AS1 (P-value = 0.047 andHR = 1.008 (1.000-1.015)) 
and the final risk scoreformula was as follows:

risk score =
1.61 × 10−3× 𝑡ℎ𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐿𝐼𝑁𝐶00486 +
7.67 × 10−3× 𝑡ℎ𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐿𝑆𝐴𝑀𝑃 −𝐴𝑆1

Positive coefficients were found for LINC00486 and LSAMP-
AS1 in both the univariate and multivariate Cox regression anal-
yses. This phenomenon suggested that they are cancer risk fac-
tors for the survival time in STAD.As shown in Figure5(A-B), the 
distribution of all risk scores and maximally selected rank statis-
tics were analyzed by surv_cutpoint() function in the survival R 
package. Thus, we set 1.14 as the optimal cutoff. Patients with 
risk scoresless than or equal to the cutoff were assigned to the 
low-risk group (315 patients), and those with risk scores greater 
than the cutoff were categorized into the high-risk group (60 
patients), respectively. The risk score signature's Kaplan-Meier 
survival analysis revealed a significant difference in survival 
times between the low- and high-risk score groups (P-value ≤ 
0.05, Figure 5C). Scatter plot and heatmap showed the lncRNAs' 
expression profiles and risk scores of 315 patients with survival 
time (Figure 5D). The results revealed that patients' risk scores 
increased as the expression levels of lncRNAs.

Figure 5: Risk score model. (A) The distribution of risk score val-
ues. (B) Maximally selected rank statistics for risk score. (C)Kaplan-
Meier survival curve between low- and high-risk score groups. (D) 
The Construction of prognostic models of risk score. The x-axis 
is the patient sorted by risk. The y-axis is the risk score. The red 
dot indicates the risk score for high-risk patients, while the green 
shows the risk score for low-risk patients.LncRNAs’expression lev-
elsin STAD patients.

Identification of independent prognostic factors

Following this, a univariate Cox regression analysis was car-
ried out to examine the 317 patients with complete clinical data 
for any markers that might be associated with OS. Based on the 
following clinical traits, we separated the patients into different 

groups: age, gender, stage, tissue of origin, primary diagnosis, 
AJCC T, AJCC M, AJCC N, race, and risk score. The finding dem-
onstrated that, like risk score, the age, stage, and AJCC N had 
statistically significant prognostic values in the green forest plot 
(Figure 5A).

The red forest plot demonstrated that stage and AJCC N clini-
cal factors were not linked to the prognosis of STAD patients in 
the multivariate Cox regression analysis. Thus, an independent 
predictive indicator of survival time for STAD patients was the 
risk score system created from the expression levels oflncRNAs 
in the ceRNA regulatory network (Figure 5B).

Figure 6: (A) Forest plot of independent univariate analysis in 
STADThe green forest plot suggested that age, stage, AJCC N, and 
risk score are related to survival time and status. One of them can 
serve as an independent clinical characteristic (P-value ≤ 0.05).
(B) Forest plot of independent multivariableprognostic analysis 
in STAD. The red forest plot suggested that age and risk score is 
related to survival time and status. The risk score can be an inde-
pendent characteristic (P-value ≤ 0.05).

Relationships between lncRNA and mRNA

Under the ceRNA mechanism concept, lncRNAs interact di-
rectly with miRNAs to positively affect mRNA expression [65]. 
Regression analysis of 13 lncRNAs and 9 mRNAs was performed 
to confirm this positive relationship phenomenon in STAD. The 
correlation values and P-values were calculated and counted. 
There are 21 positive correlation pairs, including eight lncRNAs 
and nine mRNAs (P-value ≤ 0.05 and cor> 0.3, Table S6). Fur-
thermore, we explored to see if the lncRNAs and mRNAs shared 
any miRNAs. The findings demonstrated the importance of hsa-
miR-217 as a critical miRNA in several ceRNA pathways, includ-
ing KCNA3-hsa-miR-217-AFF3 and KCNA3-hsa-miR-217-NOVA1.
We plotted the linear regression curves between KCNA3 and 
mRNAs in Figure 7(A-B).
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Figure 7: The correlation between lncRNA and mRNA. (A) lncRNA 
KCNA3 and mRNA NOVA1. (B) lncRNA KCNA3 and mRNA AFF3. The 
x-axis indicates the relative expression levels of lncRNA KCNA3, 
while the y-axis indicates the relative expression levels of mRNA 
NOVA1 and AFF3. The gray area represents a 95% confidencein-
terval.

Discussion

As the fourth most frequent cause of cancer-related deaths 
worldwide and the fifth most common malignancy, STAD con-
tinues to be a challenge for global health [20]. Patients with 
STAD continue to have a poor prognosis and an inadequate 
survival rate despite large improvements in diagnosis, preven-
tion, and therapy [61]. The ceRNA regulatory network is crucial 
to cancer development [52]. ceRNA network disruption affects 
cell growth and development, leadingtovarious diseases, in-
cluding cancer [52]. Unfortunately,very littleresearch has been 
performed on the ceRNA regulatory network in STAD prognosis.

Interestingly, recent research has provided fresh insight into 
the role of lncRNAs in the development of STAD [35]. In the tis-
sues of STAD, a sizable number of miRNAs exhibit variable ex-
pression (Wu et al. 2010). Protein-coding proto-oncogenes and 
tumor-suppressor genes are altered genetically and epigeneti-
cally during the multi-step process of STAD [19]. In particular, 
cytoplasmic lncRNAs are essential for a variety of molecular 
processes in both animal and human cells. They have the ability 
to influence mRNA stability, control mRNA translation, act as 
ceRNAs, act as miRNA precursors, and mediate protein changes 
[45]. Certain cytoplasm lncRNAs can control how cytoplasmic 
proteins are transported into the nucleus to activate transcrip-
tion [58]. Thus, we focus on the lncRNA-miRNA-mRNA regulato-
ry ceRNA network in this research. Also, we find an optimal cut-
off point to make a difference in survival analysis. In which we 
only selected lncRNA,whichis located in the cytoplasm.Based on 
survival analysis, LMO7-AS1 and MRVI1-AS1 were recognized as 
possible prognostic biomarkers and therapeutic targets in STAD. 
High expression of LMO7-AS1 was linked to a poor prognosis in 
patients with childhood kidney cancer, according to research by 
Zheng et al. [68]. LMO7-AS1 was up-regulated in colorectal can-
cer (CRC) tumors compared to non-tumor tissues [60]. Qin et 
al. reported that LMO7-AS1 was positively correlated with poor 
prognosis of CRC by screening 240 differentially expressed im-
mune-associatedlncRNAs between CRC tissues and normal tis-
sues using the bioinformatics method [44]. The survival analysis 
identified has-miR-100 and has-miR-187 as potential prognostic 
biomarkers in STAD. miR-100 is the most important miRNA re-
lated to the progression of GC [57]. MD et al. suggested that by 
performing cluster analysis, miR-100 is up-regulated in diffuse-
type GC [57]. miRNA-100 was also up-regulated in pancreatic 
Adenocarcinoma [4]. By blocking FOXA2, miR-187 encourages 
the growth and spread of GC [27]. In GC, miR-187 may serve as 
a biomarker and therapeutic target [8]. AFF3 and PROX1 have 
been deemed to be candidate prognostic biomarkers in STAD 

on the basis of survival analysis. In a recent study, AF4/FMR2 
family member 3 (AFF3) was proposed by Zeng et al. as a novel 
prognosis-related biomarker that can be used for immunother-
apyby an integrated multi-omic framework [64]. AFF3 has re-
cently been discovered to play a significant role in the initiation 
and growth of several malignancies, including glioma, breast 
cancer, and adrenocortical carcinoma [64].

Additionally, the Cox regression analysis got the lncRNAs 
LINC00486 and LSAMP-AS1 from the study of 13 lncRNAs. Mi-
croRNA-182-5p may be a target gene for LINC00486, according 
to bioinformatics analysis, and gastric cancer cells have high-
er levels of this RNA, which can encourage cancer cells' inva-
sion and migration [33]. Ma et al. concluded a novel lncRNA 
LSAMP-AS1 is involved in the prostate cancer process via tar-
geting miR-183-5p/DCN axis, and they reported thatLSAMP-AS1 
binds to microRNA-183-5p to suppress the progression of pros-
tate cancer by up-regulating the tumor suppressor DCN [36]. 
The ceRNA regulatory network's dysregulated mRNA function 
is mainly located in the following GOterm:transcription factor 
activity, nucleoplasm, chromatin, RNA polymerase II core pro-
moter proximal region sequence-specific DNA binding, and pos-
itive regulation of cell proliferation. PROX1, AFF3, SOX11, E2F3, 
and RUNX1 were involved in the transcription factor activity GO 
term. One of the most important controls over mammalian ex-
pression is runt-related transcription factor 1 (RUNX1) [56]. In 
cohorts of glioma, pancreatic cancer, colorectal cancer, cervi-
cal cancer, renal cancer, lung cancer, ovarian cancer, and gastric 
cancer, RUNX1 is a worse predictive indicator [29]. On the other 
hand, better clinical outcomes are associated with patients with 
higher levels of RUNX1 expression in both breast and prostate 
cancer patients [29]. By targeting RUNX1 and activating the 
Hippo signaling pathway, miR-28b-3p prevents invasion, migra-
tion, and epithelial-mesenchymal transition in GC [3]. SOX11, 
E2F3, EXH2, and PROX1 were involved in the positive regula-
tion of cell proliferation GO term.Due to its methyltransferase 
activity, Polycomb group protein enhancer of zeste homolog 
2(EZH2), a member of the PRCs family, can play functional roles 
in the cell. By stimulating H3K27me3, EZH2 influences gene 
expression(Mirzaei et al. 2022).EZH2 inhibitors have reportedly 
reduced metastasis and neovascularization in human malig-
nancies. EZH2 inhibitors have been used to treat colon cancer 
because they cause tumor cells to respond to them more fre-
quently (stage II and III) [38].

In particular, we have identified two promising ceRNA net-
works: KCNA3-has-miR-217-NOVA1 and KCNA3-has-miR-217-
AFF3, involved in STAD progression and prognosis.Also known 
to be dysregulated in PCa are the following K+ channels, which 
have been suggested as biomarkers. In high-grade malignan-
cies, Potassium Voltage-Gated Channel Subfamily A Member 
3(KCNA3) is down-regulated and mostly expressed in the early 
stages of cancer growth [1]. LncRNA KCNA3 serves as a poten-
tial prognostic biomarker and therapeutic target for CRC since it 
inhibits the growth of tumors by downregulating the expression 
of YAP1 [70]. When compared to the normal stomach gland tis-
sues, KCNA3 has been found and is significantly downregulated 
in stage-I STADs, which suggests it is very useful as an early diag-
nostic indicator [55]. In cancer, miR-217 is typically dysregulat-
ed. Chen et al. demonstrated that tumor tissue has lower levels 
of miR-217 than the nearby normal tissue [11]. In patients with 
GC, a low expression level of miR-217 was linked to aggressive 
tumor characteristics and poor OS [11]. The expression of neu-
ro-oncological ventral antigen 1 (NOVA1) was suppressed in GC, 
and ectopic NOVA1 expression in tumor cells contributes to tu-
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mor growth and a poor prognosis [26]. Reduced NOVA1, which 
was suppressed by miR-146b-5p, is a possible biomarker for 
predicting poor prognosis in individuals with GC [62]. It is also a 
biomarker of concealed residual disease in leftover tissues fol-
lowing GCresection [62]. Furthermore, Shen et al. showed that 
downregulating NOVA1 by miR-339 overexpression in GC cells 
inhibits malignant characteristics like proliferation, invasion, 
migration, and oncogenicity while restoring NOVA1 in miR-339-
overexpressing GC cells partially reverses the inhibitory effects 
of miR-339 [49].
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