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Introduction

Lyme Disease (LD), a serious inflammatory syndrome caused 
by the spirochete Borrelia burgdorferi (B. burgdorferi, Bb), 
is characterized by tissue inflammation of the skin, muscles, 
joints, and central nervous system (CNS). Lyme disease occurs 
throughout North America, Europe (particularly central Europe 
and Scandinavia, Russia), and Asia [1]. Since Lyme disease was 
recognized in 1976 [2], 300,000 cases have been reported annu-
ally in the United States [3,4].

Lyme arthritis is inflammatory arthritis that is likely mediated 
by the immune response to the spirochete in the joint and can 
be seen in the early or late stage of Lyme disease [5]. Lyme ar-
thritis has been characterized as a mono- or oligoarthritis, typi-
cally presenting as a monoarthritis of the knee [6,7]. Patients 

with Lyme disease could suffer from varying degrees of pain and 
swelling of the knee as well as skin involvement with redness 
and oedema around the ankle of the same leg [8,9]. 

BmpA is a major membrane protein that is closely associated 
with Lyme arthritis [10]. BmpA, a specific, highly conserved, and 
immunogenic lipoprotein, is encoded by the bmp family genes 
of paralogous chromosomal gene family 36 [11,12]. BmpA op-
erons that are induced in murine and human joints possess in-
flammatory properties. BmpA-deficient B. burgdorferi persists 
poorly in joints and fails to induce arthritis compared to the wild 
type B. burgdorferi [13]. An isogenic BmpA mutant induced sig-
nificantly lower levels of pro-inflammatory cytokines TNF-alpha 
and IL-1beta in cultured human synovial cells. BmpA can induce 
cytokine responses in synovial cells via activation of the NF-κB 
and p38 MAP kinase pathways [14].
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In the past 45 years, a wide variety of animals have been 
used to study the pathogenesis of Lyme arthritis and determine 
therapeutic targets. These animals include rodents [15] that are 
most used (C3H/HeN mice, C57BL/6J mice, Gamma interferon 
gene-deficient mice, C3H/HeN-SCID mice, BALB/C mice), ham-
sters and nonhuman primates [13,16-22]. Although the current 
infection models of Lyme arthritis are useful in understanding 
the basic immunological events that lead to the development 
of Borrelia burgdorferi-induced inflammation, these findings 
need confirmation in humans [23]. High costs limit the routine 
use of large non-human primates. The Northern Tree shrew 
(Tupaia belangeri) is a small squirrel-like mammal indigenous 
to southwest Asia. Compared with rodents, the Tree shrew ge-
nome shows higher similarity to humans, and many of their bio-
logical characteristics have close homology with humans [24]. 
Importantly, from the perspective of infectious diseases, tree 
shrews are susceptible to infection with human pathogens and 
manifest clinical signs akin to human infections [25,26]. There-
fore, using Borrelia burgdorferi bmpA to induce the occurrence 
of arthritis in tree threw could be a better choice.

Materials and methods

Ethics statement 

Tree shrews were obtained from the Kunming Medical Uni-
versity, Yunnan, China* (https://www.kmmc.cn/list1370.aspx). 
The animals were bred and maintained at the Animal Labora-
tory Center of Kunming Medical University in strict accordance 
with the rules and regulations of China animal welfare law. 
All animal experiments were approved by the Experimental 
Animal Committee of Yunnan (Permit Numbers: LA2021744, 
JXJY20200018).

rBmpA preparation

E. coli expression system was used to produce recombinant 
BmpA (rBmpA) using the bacterial expression plasmid vector 
pGEX- 6P-1 (GE, USA) (Figure 1), and the following BmpA prim-
ers was used (5′-3′containing EcoRI and Xhol restriction sites): 
forward, ACG AAT TCA TGA ATA AAA TAT TGT TGT TGA, reverse, 
AGC TCG TAA ATA AAT TCT TTA AGA AA. Expression, purification, 
and enzymatic cleavage of the glutathione transferase fusion 
protein were carried out as described before [10].

Animal preparation

Thirty-two adult female Tree shrews (4-6 months old, 150 g 
mean weight). Animals were routinely fed in a isolated cages in 
an experimental animal room under the following conditions: 
25±2°C temperature, 50% relative humidity, natural ventilation 
8~10 h/d, noise <60 dB, and 12h/12h light/dark cycle.

Induction of arthritis

The purified rBmpA protein was diluted with 0.01M PBS and 
injected into the left knee joints of tree shrews following differ-
ent concentrations: Low dose groups (0.04 mg/ml, 50 µL), high 
dose groups (0.08 mg / ml, 50 µL), PBS groups (0.01M, 50 µL). 
All tree shrews were then examined daily for joint swelling and 
assigned a clinical arthritis score (Figure 1).

Arthritis scoring

The arthritis scores were scored twice a week by two people 
who were not sure about the experimental group. Arthritis in-
dex score criteria (0-4) were as follows [27]: 0, no swelling or 
inflammation; 1, slight swelling and/or redness of paw; 2, mod-

erate swelling in joints; 3, pronounced swelling with more than 
two joints; and 4, severe swelling with joint rigidity. The arthritis 
score was the sum of the affected joints in each tree shrew’s 
hind limbs.

Tissue collection and histopathologic analysis

The tree shrews in each group (n=8) were euthanized by CO2 
asphyxia on the 28th day after injection. The hind limbs of each 
animal were immediately fixed in 10% formalin, then decalci-
fied, implanted with paraffin, sectioned and stained with hae-
matoxylin-eosin. The slides were observed under high power 
microscope (×40) taken photos.

Tree shrew blood cytokines detection

The heart blood was collected from Tree shrews on the 7th, 
14th, and 21st days after the injection. Total RNA was extracted 
from whole blood using RNAiso Plus reagent (TaKaRa). A Prime 
Script RT reagent Kit with Gdna Eraser (TaKaRa) was used to syn-
thesize cDNA, according to the manufacturer’s protocol. Real-
time PCR was conducted using SYBR Premix Ex Taq (TaKaRa), 
according to the manufacturer’s protocol. Relative gene expres-
sion levels were calculated using the comparative threshold 
cycle method for quantitative PCR, with data normalized to the 
housekeeping gene GAPDH. Sequences of the specific primers 
used to amplify GAPDH, TNF-α, IL-2, IL-6, IL-10, IL-17, CXCR4 are 
listed in Table 1.

Table 1: Sequences of specific primers used for quantitative RT-
PCR.

Gene Forward primer (5´→3´) Reverse primer (5´→3´)

GAPDH GGTGCCGAGTATGTTGTGGA TCTCATGGTTCACGCCCATC

TNF-α CGCTACCTGGACTTTGCTGA CCCTGAGCCCCTAATTCCCT

IL-2 CGTCACAAACAGTGCACCTAC CCTGGAGAGCATCTTTGGGTT

IL-6 CGTCACAAACAGTGCACCTAC CCTGGAGAGCATCTTTGGGTT

IL-10 AAACCAAACCACAAGGGCAC AGGTTGGCTGGGAAGTAGGT

IL-17A CTGTGTGGATGCTGAAGGGA CAGCCCACAGTCACCAGTAT

CXCR4 GACTTGTGGGTGGTAGTGTTCC GACTGTGGTCTTCAGGGCTTTG

Statistical analysis

All data are shown as means ± Standard Deviation (SD). Sta-
tistical analysis were performed using GraphPad Prism 9.2.0 
software (GraphPad Software Inc, San Diego, CA). Two-way 
Analysis Of Variance (ANOVA) was used for comparison of mul-
tiple groups, followed by Tukey’s multiple comparison test for 
post hoc test. P<0.05 was set as the level of statistical signifi-
cance.

Figure 1: Schematic illustration of the preparation of rBmpA to 
induce Lyme arthritis in tree threw and verification of the study.
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Results

Animal observation

The tree shrews in the healthy control group (Figure 2A) and 
the PBS control group had normal feeding, flexible activities, no 
“wet tail” caused by diarrhea, no bleeding at the injection site, 
no rash, and slight redness and swelling at the local injection 
site 24h after the injection lasted only 2 to 3 days. No other 
abnormality post-injection was seen by the naked eye (Figure 
2A,B). In experimental group, food intake, activity, and body re-
sponse of the tree shrews were generally reduced on day 7 after 
rBmpA injection, which manifested as often animals hiding in 
cages and not easy to be driven. 

The degree of joint swelling in rBmpA-injected tree shrew 
group

The knee joint swelling and congestion in the low-dose rBm-
pA group were all obvious. The knee joint swelling in the high-
dose rBmpA group was more clear, but the congestion was not 
obvious (Figure 2C,2D). Both rBmpA groups reached the peak 
of lesions in 7-15 days, and then the symptoms gradually allevi-
ated after 3 week (Figure 2E). rBmpA groups have small ulcers 
on their knee joints after rBmpA injection, and the scabs can 
be repaired in about 2-3 days. The stool under the cage was 
observed to be green and loose. After anatomy, it was found 
that the intestines were dark. It may be caused by enteritis, di-
arrhea, and dehydration. Our evidence showed that there were 
no obvious lesions on the front paws, tails, and other surfaces 
of the tree shrews in each group. One week after the injection, 
the incidence of arthritis in the experimental group reached 
80%, and the arthritis score was 2-6. The average arthritis index 
reached a peak two weeks after the injection (Figure 2F). The 
clinical symptoms in the high-dose group are easier to observe. 
The tree shrews in the health control group (Figure 2A) and PBS 
group (Figure 2B) showed no swelling and congestion of hind 
limb.

Figure 2: The degree of joint swelling in the tree threws rBmpA 
group was obvious. (A-D) The images of each group were collected 
on the 14th day after the injection was stopped. Compared with the 
healthy control (A), the PBS group (B) showed no signs of joint in-
flammation and other infections. In representative pictures of the 
left hind limb injection of rBmpA 2ug (C) and 4ug (D) directly in-
jected on the 14th day are shown. (E) Time course of joint swelling 
of the left hind limb with direct injection (joint thickness in milli-
meters). (F) Dynamic changes of the average arthritis index of each 
group in tree shrew.

Injection of rBmpA triggered synovial cartilage degenera-
tion 

All tree shrews were euthanized on day 28 postinjection. 
Both hind limbs of each euthanized animal were immersion-
fixed, decalcified, and stained with hematoxylin-eosin for his-

topathological evaluation. Tree shrews in the rBmpA groups 
(Figure 3C,3D) showed early manifestations of cartilage degen-
eration, with normal joint spaces, irregular articular surfaces, 
depressions in the synovial cartilage of the joints, and irregular 
cell arrangement in the depressions. In addition, the irregular 
depressions or line-like grooves on the surface of articular car-
tilage showed chondrocyte proliferation and cartilage micro-
fibrosis. Such articular cartilage degeneration were absent in 
control group injected with PBS (Figure 3B). Our data indicate 
that local exposure of the joints to rBmpA is sufficient to trigger 
the early pathological changes of arthritis.

Figure 3: Injection of rBmpA triggers synovial cartilage degenera-
tion in tree shrews. Representative optical micrograph of hematox-
ylin-eosin-stained sections of tree shrew joint collected on the 28th 
day after administration. (A) The uninjected healthy control tree 
shrews had no histopathological features. (B) PBS groups lacked 
histopathological features when examined at the same time point. 
(C) Low dose rBmpA groups showed a single local joint synovial 
cartilage depression, and the cells in the depression site are not 
aligned rule (arrow). (D) High dose rBmpA groups showed joint 
multiple synovial cartilage degeneration, joint synovial cartilage 
depression, irregular cell arrangement in the depression, Cartilage 
cell hyperplasia, and cartilage microfibrosis (arrow).

The expression of TNF-α and CXCR4 in tree shrews 

To further study pathogenesis of rBmpA-induced arthritis, 
the expression levels of IL-2, IL-6, IL-10, IL-17A, TNF-α, and 
CXCR4 mRNA in peripheral blood of tree shrews were deter-
mined by RT-PCR following rBmpA injection. Compared with 
the untreated control group, TNF-α and CXCR4 mRNA expres-

Figure 4: Significant alteration of TNF and CXCR4 mRNA expression 
from peripheral blood of tree threws after rBmpA induction at 1, 
2, and 3 week. Statistically significant differences between groups 
(P<0.01). **P<0.01, *P<0.05. Analyzed with two-way ANOVA and 
data were expressed as the means ± SD. Abbreviations: TNF, tumor 
necrosis factor α; CXCR4, chemokine CXC receptor 4; rBmpA, re-
combinant Borrelia burgdorferi basic membrane protein A.
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sion levels in tree shrew peripheral blood increased significantly 
after rBmpA stimulation for 1,2, and 3w, reaching a peak at 2 
weeks. However, there were no significant differences in IL-2, 
IL-6, IL-10, and IL-17A mRNA expression levels in experimental 
group relative to the control group at any time point.

Discussion

The pathogenesis of Lyme arthritis is still under exploration. 
Our study confirmed that using rBmpA to inject into knee joint 
of tree shrews can induce Lyme arthritis. 

Tree shrew as an animal model broadens the limitations of 
Lyme arthritis research. Since tree shrews are closer to humans, 
we used tree shrews to simulate the characteristics of human 
Lyme arthritis. So far, Borrelia burgdorferi has been used to in-
fect variety of animal models, including rodents [28-30], rab-
bits [31,32], dogs [33,34], monkeys [35] horses [36], cattle [37] 
and people, etc [38]. However, the animal models for Lyme ar-
thritis are mainly mice. These mice provide important insights 
and valuable knowledge for understanding the pathogenesis of 
Lyme arthritis. Although mice are widely used because of their 
small size and clear genetic background, there are significant 
genetic differences between rodents and humans. Be cautious 
when translating these findings directly into the human system 
[39]. Mice sets limitations for the study of human Lyme arthri-
tis. Non-human primates are genetically close to humans, and 
they can simulate human physiology and pathology relatively 
accurately. However, their high cost and low productivity also 
severely limit their use. Human body experiments, due to issues 
related to the maintenance of human ethics, and the difficulty 
of recruiting volunteers, hinder the possibility of its implemen-
tation. Compared with other experimental animals, tree shrew 
genome sequencing showed that its neural, immune, and meta-
bolic systems are very close to humans, and it is a small mam-
mal closely related to primates. It has been proposed as an al-
ternative laboratory animal to primates in biomedical research 
[40].

 Our research is to use rBmpA instead of live Borrelia burg-
dorferi as an inducer for its close relationship with Lyme disease 
(Figure 1). At present, the establishment of animal models of 
Lyme arthritis is mainly carried out by subcutaneous injection of 
live Borrelia burgdorferi [41]. This induction method is intended 
to simulate the natural transmission method of tick bites to 
infect animals, but some animal studies also used needle in-
oculation instead of tick transmission to infect animals, com-
pared to the natural method of tick bites. It have found that, 
For spirochetes that enter animals in this way, the eradication of 
Borrelia burgdorferi with antibiotics may not be complete. Bor-
relia burgdorferi DNA can be detected in animals tissues up to 
9 months after antibiotic treatment [34,35,42-44]. In the past, 
it was believed that if this kind of tissue residual spirochetes 
exists in humans, it is the cause of post-Lyme disease syndrome 
(persistent musculoskeletal pain, neurocognitive symptoms, or 
fatigue feelings after antibiotic treatment, etc.) [45-47]. How-
ever, the current view believes that there is a serious method-
ological problem that does not consider the pharmacokinetics 
of antibiotics when choosing the dosage regimen used Kinetic-
pharmacodynamic properties [48], the pathogenesis of later 
features of LD may no longer be dependent on infection [49]. 
The study found that BmpA is one of the exposed and highly 
antigenic proteins on the surface of Borrelia burgdorferi. BmpA 
can induce cytokine response in synovial cells. NF-κB and p38 
MAP kinase pathway activate the pro-inflammatory response 
of human synovial cells [14]. In mice, it may trigger a complex 

cascade of host inflammatory responses that cause arthritis. 
It was found that the expression levels of Borrelia burgdorferi 
bmpA and bmpB were significantly higher than that of the skin, 
suggesting that bmpA may also be applicable to Lyme arthri-
tis model [13]. Our previous studies have also shown that the 
basic membrane protein A of Borrelia burgdorferi triggers a 
storm of pro-inflammatory chemokines in THP1-derived mac-
rophages through receptors TLR1 and TLR2, which may trigger 
innate and adaptation in infected arthritis [10]. Therefore, on 
the one hand, in order to avoid the controversy of Lyme disease 
syndrome caused by residual spirochetes, we can use rBmpA to 
replicate Lyme arthritis model [13,14,50].

rBmpA induces pathological changes in the synovium of 
tree shrew joints (Figure 3). The pain caused by human Lyme 
arthritis can be seen in the early or late stage, the early stage 
is mainly proliferative synovitis [51], and some patients in the 
late stage can develop chronic and severely destructive Lyme 
arthritis [8], and its pathological characteristics include synovial 
hyperplasia, infiltration of monocytes into the synovium, forma-
tion of inflammatory exudates on the synovial cell wall (vascu-
lar loop formation), cartilage destruction, and bones and joints 
[52,53]. C3H mice, the most commonly used animal models for 
Lyme arthritis [23], whose severity of this arthritis usually peaks 
around 3 weeks after the Intradermal inoculation of susceptible 
strains, after which the pathological changes quickly subside. In 
addition, joint edema changes are usually accompanied by his-
tological changes. In the infection model of Lyme arthritis mice, 
this swelling can be observed about 2 weeks after infection and 
gradually decreases. In our study, the degree of joint swelling 
and arthritis index of tree shrews reached their peak at 2 weeks 
after being infected with rBmpA, and then gradually decreased 
(Figure 2). The pathology of the tree shrew’s joints is that the 
early manifestations of cartilage degeneration appear after 4 
weeks (Figures 3C and 3D).the articular surface is irregular, the 
joint synovial cartilage is recessed, the cell arrangement of the 
recessed area is irregular. Because it is a preliminary explora-
tion, the observation time is also being explored. If continuous 
long-term observation is continued, further research can be 
done on whether rBmpA can cause persistent Lyme disease ar-
thritis.

In this study, we found that increased TNF-α (Figure 4A) and 
CXCR4 (Figure 4B) in the blood of the tree threws in response 
to rBmpA of Borrelia Spirochetes. An previous study reported 
that rBmpA initiates proinflammatory chemokine storm in THP 
1-derived macrophages in humans via the receptors TLR1 and 
TLR2 [10]. TLRs are a conservative molecular model in which 
the receptors of the host cell can recognize microbial compo-
nents such as lipoproteins, lipopolysaccharides, flagellin, and 
nucleic acids [54]. The rBmpA used in our study is one of the 
lipoprotein molecules on the surface of the Borrelia burgdor-
feri membrane, which may be recognized by TLRs to initiate 
the innate immune response. Studies have shown an increase 
in transcript levels of genes encoding CC and CXC chemokines, 
proinflammatory cytokines, and TNF superfamily members in 
the joint tissues infected with live Borrelia burgdorferi-infected 
mice [55-57]. Under the stimulation of Borrelia burgdorferi, 
neutrophils promote the development of arthritis by releasing 
pro-inflammatory cytokines, including TNF-A, IL-1, IL-8, IL-15, 
and so on [58,59]. Chemokines can regulate leukocyte traffick-
ing during host defense immune response [60]. CXCR4 is one 
of the receptors of the chemokine subfamily CXC, a typical G 
Protein-Coupled Receptor (GPCR) [64,65], which can activate G-
protein-mediated downstream signaling pathways [66], whose 
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ligand is CXCL12, an important member of the CXC chemokines 
[16]. The CXCL12-CXCR4 axis is well established to play multiple 
roles in cellular migration, survival, and proliferation, as well as 
in other functions [61-63]. CXCL12 and CXCR4 were highly ex-
pressed in the serum and joint synovial fluid of patients with 
Rheumatoid Arthritis (RA) [64]. CXCR4 levels in synovium have 
been correlated with joint destruction in RA patients [65]. The 
subset expressing CXCR4 in the peripheral blood positively cor-
related with TNF-α in RA patients [66]. TNF-α has involved the 
occurrence of inflammation and the pathogenesis in RA [67,68]. 
TNF-a and CXCR4 reached their peaks 2 weeks after rBmpA in-
oculation (Figure 4), which was consistent with the process of 
joint swelling (Figure 2). Our experiment suggests that CXCR4 
and TNF-α may be involved in the inflammation of Lyme arthri-
tis.

Moreover, studies have shown that CXCR4 was both rela-
tively highly expressed in the spleen and thymus of tree threws, 
which implying that CXCR4 may be involved in some aspect 
of immunological regulation among tree shrews. The study 
showed that CXCL12 and CXCR4 in tree threws are structurally 
similar to their homologous human proteins. The similarities 
between tree shrew and humans CXCR4 were as high as 97%, 
and those of mice and rats were 91% and 92%, respectively 
[69]. This shows that the expression of CXCR4 in tree shrews 
is closer to humans than in mice and rats. Tree shrews might 
be more suitable for explaining human clinical phenomena. Our 
experiment implicated that tree shrews CXCR4 level increase 
during joint swelling (Figure 2) may play similar roles as those 
in humans Lyme arthritis. Tree shrew may be a viable animal 
model for studying human Lyme arthritis.

In the next step, we plan to extend the observation time of 
tree shrew model, increase the induction mode of rBmpA and 
use more experimental verification methods which is beneficial 
to the research of Lyme arthritis.

Conclusion

Our study identifies rBmpA as a likely contributor to inflam-
matory responses in vivo in tree threw arthritis. Persistence of 
this antigen in the joint may lead to synovitis. Using new meth-
od of to simulate Lyme arthritis of tree shrews with rBmpA im-
munogen helps to expand Lyme arthritis model spectrum. The 
expression of tumor necrosis factor-α and CXCR4 gene in whole 
blood of tree shrews increased significantly and could correlate 
to Lyme arthritis pathogenesis. Manifestations in tree shrew ar-
thritis suggests a potential role of rBmpA in the pathogenesis of 
Lyme arthritis.
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